Browsing by Author "Liu, Jie"
Now showing 1 - 20 of 39
Results Per Page
Sort Options
Item Array of fullerene nanotubes(2009-12-15) Smalley, Richard E.; Colbert, Daniel T.; Dai, Hongjie; Liu, Jie; Rinzler, Andrew G.; Hafner, Jason H.; Smith, Kenneth A.; Guo, Ting; Nikolaev, Pavel; Thess, Andreas; Rice University; United States Patent and Trademark OfficeThis invention relates generally to forming an array of fullerene nanotubes. In one embodiment, a macroscopic molecular array is provided comprising at least about 106 fullerene nanotubes in generally parallel orientation and having substantially similar lengths in the range of from about 5 to about 500 nanometers.Item Array of single-wall carbon nanotubes(2006-07-04) Smalley, Richard E.; Colbert, Daniel T.; Dai, Hongjie; Liu, Jie; Rinzler, Andrew G.; Hafner, Jason H.; Smith, Kenneth A.; Guo, Ting; Nikolaev, Pavel; Thess, Andreas; Rice University; United States Patent and Trademark OfficeThis invention relates generally to forming an array of single-wall carbon nanotubes (SWNT). In one embodiment, a macroscopic molecular array is provided comprising at least about 106 single-wall carbon nanotubes in generally parallel orientation and having substantially similar lengths in the range of from about 5 to about 500 nanometers.Item Carbon fibers formed from single-wall carbon nanotubes(2004-01-27) Smalley, Richard E.; Colbert, Daniel T.; Dai, Hongjie; Liu, Jie; Rinzler, Andrew G.; Hafner, Jason H.; Smith, Kenneth A.; Guo, Ting; Nikolaev, Pavel; Thess, Andreas; Rice University; United States Patent and Trademark OfficeA method for purifying a mixture comprising single-wall carbon nanotubes and amorphous carbon contaminate is disclosed. The method includes the steps of heating the mixture under oxidizing conditions sufficient to remove the amorphous carbon, followed by recovering a product comprising at least about 80% by weight of single-wall carbon nanotubes. A method for producing tubular carbon molecules of about 5 to 500 nm in length is also disclosed. The method includes the steps of cutting single-wall nanotube containing-material to form a mixture of tubular carbon molecules having lengths in the range of 5-500 nm and isolating a fraction of the molecules having substantially equal lengths. The nanotubes may be used, singularly or in multiples, in power transmission cables, in solar cells, in batteries, as antennas, as molecular electronics, as probes and manipulators, and in composites.Item Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof- and use of derivatized nanotubes(2004-12-28) Margrave, John L.; Mickelson, Edward T.; Hauge, Robert H.; Boul, Peter; Huffman, Chad; Liu, Jie; Smalley, Richard E.; Smith, Kenneth A.; Colbert, Daniel T.; Rice University; United States Patent and Trademark OfficeThis invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium. Alternatively, fluorine may be fully or partially removed from fluorine derivatized carbon nanotubes by reacting the fluorine derivatized carbon nanotubes with various amounts of hydrazine, substituted hydrazine or alkyl amine. The present invention also provides seed materials for growth of single wall carbon nanotubes comprising a plurality of single wall carbon nanotubes or short tubular molecules having a catalyst precursor moiety covalently bound or physisorbed on the outer surface of the sidewall to provide the optimum metal cluster size under conditions that result in migration of the metal moiety to the tube end.Item Chemical derivatization of single-wall carbon nanotubes to facilitate solvation thereof; and use of derivatized nanotubes to form catalyst-containing seed materials for use in making carbon fibers(2003-11-11) Margrave, John L.; Mickelson, Edward T.; Hauge, Robert H.; Boul, Peter; Huffman, Chad; Liu, Jie; Smalley, Richard E.; Smith, Kenneth A.; Colbert, Daniel T.; Rice University; United States Patent and Trademark OfficeThis invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium. Alternatively, fluorine may be fully or partially removed from fluorine derivatized carbon nanotubes by reacting the fluorine derivatized carbon nanotubes with various amounts of hydrazine, substituted hydrazine or alkyl amine. The present invention also provides seed materials for growth of single wall carbon nanotubes comprising a plurality of single wall carbon nanotubes or short tubular molecules having a catalyst precursor moiety covalently bound or physisorbed on the outer surface of the sidewall to provide the optimum metal cluster size under conditions that result in migration of the metal moiety to the tube end.Item Chemically modifying single wall carbon nanotubes to facilitate dispersal in solvents(2005-04-05) Margrave, John L.; Mickelson, Edward T.; Hauge, Robert H.; Boul, Peter; Huffman, Chad; Liu, Jie; Smalley, Richard E.; Smith, Kenneth A.; Colbert, Daniel T.; Rice University; United States Patent and Trademark OfficeThis invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium. Alternatively, fluorine may be fully or partially removed from fluorine derivatized carbon nanotubes by reacting the fluorine derivatized carbon nanotubes with various amounts of hydrazine, substituted hydrazine or alkyl amine. The present invention also provides seed materials for growth of single wall carbon nanotubes comprising a plurality of single wall carbon nanotubes or short tubular molecules having a catalyst precursor moiety covalently bound or physisorbed on the outer surface of the sidewall to provide the optimum metal cluster size under conditions that result in migration of the metal moiety to the tube end.Item Continuous fiber of fullerene nanotubes(2010-02-02) Smalley, Richard E.; Colbert, Daniel T.; Dai, Hongjie; Liu, Jie; Rinzler, Andrew G.; Hafner, Jason H.; Smith, Kenneth A.; Guo, Ting; Nikolaev, Pavel; Thess, Andreas; Rice University; United States Patent and Trademark OfficeThis invention relates generally to carbon fiber produced from fullerene nanotube arrays. In one embodiment, the present invention involves a macroscopic carbon fiber comprising at least 106 fullerene nanotubes in generally parallel orientation.Item Continuous fiber of single-wall carbon nanotubes(2005-12-27) Smalley, Richard E.; Colbert, Daniel T.; Dai, Hongjie; Liu, Jie; Rinzler, Andrew G.; Hafner, Jason H.; Smith, Kenneth A.; Guo, Ting; Nikolaev, Pavel; Thess, Andreas; Rice University; United States Patent and Trademark OfficeThis invention relates generally to carbon fiber produced from single-wall carbon nanotube (SWNT) molecular arrays. In one embodiment, the present invention involves a macroscopic carbon fiber comprising at least 106 signal-wall carbon nanotubes in generally parallel orientation.Item Dispersions and solutions of fluorinated single-wall carbon nanotubes(2004-12-07) Margrave, John L.; Mickelson, Edward T.; Hauge, Robert H.; Boul, Peter; Huffman, Chad; Liu, Jie; Smalley, Richard E.; Smith, Kenneth A.; Colbert, Daniel T.; Rice University; United States Patent and Trademark OfficeThis invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium. Alternatively, fluorine may be fully or partially removed from fluorine derivatized carbon nanotubes by reacting the fluorine derivatized carbon nanotubes with various amounts of hydrazine, substituted hydrazine or alkyl amine. The present invention also provides seed materials for growth of single wall carbon nanotubes comprising a plurality of single wall carbon nanotubes or short tubular molecules having a catalyst precursor moiety covalently bound or physisorbed on the outer surface of the sidewall to provide the optimum metal cluster size under conditions that result in migration of the metal moiety to the tube end.Item Fullerene nanotube compositions(2008-06-24) Smalley, Richard E.; Colbert, Daniel T.; Dai, Hongjie; Liu, Jie; Rinzler, Andrew G.; Hafner, Jason H.; Smith, Kenneth A.; Guo, Ting; Nikolaev, Pavel; Thess, Andreas; Rice University; United States Patent and Trademark OfficeThis invention relates generally to a fullerene nanotube composition. The fullerene nanotubes may be in the form of a felt, such as a bucky paper. Optionally, the fullerene nanotubes may be derivatized with one or more functional groups. Devices employing the fullerene nanotubes of this invention are also disclosed.Item Functionalized single-wall carbon nanotubes(2009-05-05) Margrave, John L.; Mickelson, Edward T.; Hauge, Robert H.; Boul, Peter; Huffman, Chad; Liu, Jie; Smalley, Richard E.; Smith, Kenneth A.; Colbert, Daniel T.; Rice University; United States Patent and Trademark OfficeThis invention is directed to making chemical derivatives of carbon nanotubes and to uses for the derivatized nanotubes, including making arrays as a basis for synthesis of carbon fibers. In one embodiment, this invention also provides a method for preparing single wall carbon nanotubes having substituents attached to the side wall of the nanotube by reacting single wall carbon nanotubes with fluorine gas and recovering fluorine derivatized carbon nanotubes, then reacting fluorine derivatized carbon nanotubes with a nucleophile. Some of the fluorine substituents are replaced by nucleophilic substitution. If desired, the remaining fluorine can be completely or partially eliminated to produce single wall carbon nanotubes having substituents attached to the side wall of the nanotube. The substituents will, of course, be dependent on the nucleophile, and preferred nucleophiles include alkyl lithium species such as methyl lithium. Alternatively, fluorine may be fully or partially removed from fluorine derivatized carbon nanotubes by reacting the fluorine derivatized carbon nanotubes with various amounts of hydrazine, substituted hydrazine or alkyl amine. The present invention also provides seed materials for growth of single wall carbon nanotubes comprising a plurality of single wall carbon nanotubes or short tubular molecules having a catalyst precursor moiety covalently bound or physisorbed on the outer surface of the sidewall to provide the optimum metal cluster size under conditions that result in migration of the metal moiety to the tube end.Item Macroscopically manipulable nanoscale devices made from nanotube assemblies(2006-05-23) Colbert, Daniel T.; Dai, Hongjie; Hafner, Jason H.; Rinzler, Andrew G.; Smalley, Richard E.; Liu, Jie; Smith, Kenneth A.; Guo, Ting; Nikolaev, Pavel; Thess, Andreas; Rice University; United States Patent and Trademark OfficeMacroscopically manipulable nanoscale devices made from nanotube assemblies are disclosed. The article of manufacture comprises a macroscopic mounting element capable of being manipulated or observed in a macroscale environment, and a nanoscale nanotube assembly attached to the mounting element. The article permits macroscale information to be provided to or obtained from a nanoscale environment. A method for making a macroscopically manipulable nanoscale devices comprises the steps of (1) providing a nanotube-containing material; (2) preparing a nanotube assembly device having at least one carbon nanotube for attachment; and (3) attaching said nanotube assembly to a surface of a mounting element.Item Macroscopically manipulable nanoscale devices made from nanotube assemblies(2011-06-14) Colbert, Daniel T.; Dai, Hongjie; Hafner, Jason H.; Rinzler, Andrew G.; Smalley, Richard E.; Liu, Jie; Smith, Kenneth A.; Guo, Ting; Nikolaev, Pavel; Thess, Andreas; Rice University; United States Patent and Trademark OfficeThis invention relates generally to cutting single-wall carbon nanotubes (SWNT). In one embodiment, the present invention provides for preparations of homogeneous populations of short carbon nanotube molecules by cutting and annealing (reclosing) the nanotube pieces followed by fractionation. The cutting and annealing processes may be carried out on a purified nanotube bucky paper, on felts prior to purification of nanotubes or on any material that contains single-wall nanotubes. In one embodiment, oxidative etching with concentrated nitric acid is employed to cut SWNTs into shorter lengths. The annealed nanotubes may be disbursed in an aqueous detergent solution or an organic solvent for the fractionation. Closed tubes can also be derivatized to facilitate fractionation, for example, by adding solubilizing moieties to the end caps.Item Membrane comprising an array of single-wall carbon nanotubes(2007-04-17) Smalley, Richard E.; Colbert, Daniel T.; Dai, Hongjie; Liu, Jie; Rinzler, Andrew G.; Hafner, Jason H.; Smith, Kenneth A.; Guo, Ting; Nikolaev, Pavel; Thess, Andreas; Rice University; United States Patent and Trademark OfficeThis invention relates generally to membranes comprising an array of single-wall carbon nanotubes (SWNT) wherein the membrane is nanoporous. In one embodiment, the membrane comprises a substantially two-dimensional array of a homogeneous population of single-walled nanotubes aggregated in substantially parallel orientation to form a monolayer extending in directions substantially perpendicular to the orientation of the individual nanotubes. Using single-wall carbon nanotubes of the same type and structure provides a homogeneous array. By using different single-wall carbon nanotubes, either a random or ordered heterogeneous structure can be produced by employing successive reactions after removal of previously masked areas of a substrate. Other embodiments of the invention include batteries comprising a membrane comprising an array of single-wall carbon nanotubes or carbon fibers that are aggregates of single-wall carbon nanotubes, and wherein the plurality of single-wall carbon nanotubes are in a generally parallel orientation.Item Method for cutting fullerene nanotubes(2009-01-27) Smalley, Richard E.; Colbert, Daniel T.; Dai, Hongjie; Liu, Jie; Rinzler, Andrew G.; Hafner, Jason H.; Smith, Kenneth A.; Guo, Ting; Nikolaev, Pavel; Thess, Andreas; Rice University; United States Patent and Trademark OfficeThis invention relates generally to cutting fullerene nanotubes. In one embodiment, the present invention provides for preparation of homogeneous populations of short fullerene nanotubes by cutting and annealing (reclosing) the nanotube pieces followed by fractionation. The cutting and annealing processes may be carried out on a purified nanotube bucky paper, on felts prior to purification of nanotubes or on any material that contains fullerene nanotubes. In one embodiment, oxidative etching with concentrated nitric acid is employed to cut fullerene nanotubes into shorter lengths. The annealed nanotubes may be disbursed in an aqueous detergent solution or an organic solvent for the fractionation. Closed tubes can also be derivatized to facilitate fractionation, for example, by adding solubilizing moieties to the end caps.Item Method for cutting nanotubes(2006-03-07) Smalley, Richard E.; Colbert, Daniel T.; Dai, Hongjie; Liu, Jie; Rinzler, Andrew G.; Hafner, Jason H.; Smith, Kenneth A.; Guo, Ting; Nikolaev, Pavel; Thess, Andreas; Rice University; United States Patent and Trademark OfficeThis invention relates generally to cutting single-wall carbon nanotubes (SWNT). In one embodiment, the present invention provides for preparation of homogeneous populations of short carbon nanotube molecules by cutting and annealing (reclosing) the nanotube pieces followed by fractionation. The cutting and annealing processes may be carried out on a purified nanotube bucky paper, on felts prior to purification of nanotubes or on any material that contains single-wall nanotubes. In one embodiment, oxidative etching with concentrated nitric acid is employed to cut SWNTs into shorter lengths. The annealed nanotubes may be disbursed in an aqueous detergent solution or an organic solvent for the fractionation. Closed tubes can also be derivatized to facilitate fractionation, for example, by adding solubilizing moieties to the end caps.Item Method for cutting single-wall carbon nanotubes(2006-05-30) Colbert, Daniel T.; Dai, Hongjie; Hafner, Jason H.; Rinzler, Andrew G.; Smalley, Richard E.; Liu, Jie; Smith, Kenneth A.; Guo, Ting; Nikolaev, Pavel; Thess, Andreas; Rice University; United States Patent and Trademark OfficeThis invention relates generally to cutting single-wall carbon nanotubes (SWNT). In one embodiment, the present invention provides for preparations of homogemeous populations of short carbon nanotube molecules by cutting and annealing (reclosing) the nanotube pieces followed by fractionation. The cutting and annealing processes may be carried out on a purified nanotube bucky paper, on felts prior to purification of nanotubes or on any material that contains single-wall nanotubes. In one embodiment, oxidative etching with concentrated nitric acid is employed to cut SWNTs into shorter lengths. The annealed nanotubes may be disbursed in an aqueous detergent solution or an organic solvent for the fractionation. Closed tubes can also be derivatized to facilitate fractionation, for example, by adding solubilizing moieties to the end caps.Item Method for forming a patterned array of fullerene nanotubes(2009-03-31) Smalley, Richard E.; Colbert, Daniel T.; Dai, Hongjie; Liu, Jie; Rinzler, Andrew G.; Hafner, Jason H.; Smith, Kenneth A.; Guo, Ting; Nikolaev, Pavel; Thess, Andreas; Rice University; United States Patent and Trademark OfficeThis invention relates generally to forming a patterned array of fullerene nanotubes. In one embodiment, a nanoscale array of microwells is provided on a substrate; a metal catalyst is deposited in each microwells; and a stream of hydrocarbon or CO feedstock gas is directed at the substrate under conditions that effect growth of fullerene nanotubes from each microwell.Item Method for forming a patterned array of single-wall carbon nanotubes(2006-09-19) Smalley, Richard E.; Colbert, Daniel T.; Dai, Hongjie; Liu, Jie; Rinzler, Andrew G.; Hafner, Jason H.; Smith, Kenneth A.; Guo, Ting; Nikolaev, Pavel; Thess, Andreas; Rice University; United States Patent and Trademark OfficeThis invention relates generally to forming a patterned array of single-wall carbon nanotubes (SWNT). In one embodiment, a nanoscale array of microwells is provided on a substrate; a metal catalyst is deposited in each microwells; and a stream of hydrocarbon or CO feedstock gas is directed at the substrate under conditions that effect growth of single-wall carbon nanotubes from each microwell.Item Method for forming an array of single-wall carbon nanotubes in an electric field and compositions thereof(2006-08-08) Smalley, Richard E.; Colbert, Daniel T.; Dai, Hongjie; Liu, Jie; Rinzler, Andrew G.; Hafner, Jason H.; Smith, Kenneth A.; Guo, Ting; Nikolaev, Pavel; Thess, Andreas; Rice University; United States Patent and Trademark OfficeThis invention relates generally to a forming an array of single-wall carbon nanotubes (SWNT) in an electric field and compositions thereof. In one embodiment, a purified bucky paper of single-wall carbon nanotubes is used as the starting material. Upon oxidative treatment of the bucky paper surface, many tube and/or rope ends protrude up from the surface of the paper. Disposing the resulting bucky paper in an electric field results in the protruding tubes and or ropes of single-wall carbon nanotubes aligning in a direction substantially perpendicular to the paper surface. These tubes tend to coalesce to form a molecular array. In another embodiment, a molecular array of SWNTs can be made by “combing” the purified bucky paper starting material with a sharp microscopic tip to align the nanotubes.