Browsing by Author "Linton, Mark G."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Simulation of Thermal Nonequilibrium Cycles in the Solar Wind(IOP Publishing, 2024) Scott, Roger B.; Reep, Jeffrey W.; Linton, Mark G.; Bradshaw, Stephen J.Thermal nonequilibrium (TNE) is a condition of the plasma in the solar corona in which the local rate of energy loss due to radiation increases to the point that it cannot be sustained by the various heating terms acting on the plasma, precluding the existence of a steady state. The limit cycles of precipitation and evaporation that result from TNE have been simulated in 1D models of coronal loops, as well as 2D and 3D models of the solar chromosphere and lower corona. However, a careful study of TNE in the solar wind has not been performed until now. Here, we demonstrate that for suitable combinations of local and global heating rates, it is possible for the plasma to exhibit a TNE condition, even in the context of a transonic solar wind with appreciable mass and energy fluxes. This implies limits on the amount of footpoint heating that can be withstood under steady-state conditions in the solar wind, and may help to explain the variability of solar wind streams that emanate from regions of highly concentrated magnetic flux on the solar surface. The implications of this finding pertain to various sources of high-density solar wind, including plumes that form above regions of mixed magnetic polarity in polar coronal holes and the slow solar wind that emanates from coronal hole boundaries.Item The Dynamic Evolution of Solar Wind Streams Following Interchange Reconnection(IOP Publishing, 2022) Scott, Roger B.; Bradshaw, Stephen J.; Linton, Mark G.Interchange reconnection is thought to play an important role in determining the dynamics and material composition of the slow solar wind that originates from near coronal-hole boundaries. To explore the implications of this process we simulate the dynamic evolution of a solar wind stream along a newly-opened magnetic flux tube. The initial condition is composed of a piecewise continuous dynamic equilibrium in which the regions above and below the reconnection site are extracted from steady-state solutions along open and closed field lines. The initial discontinuity at the reconnection site is highly unstable and evolves as a Riemann problem, decomposing into an outward-propagating shock and inward-propagating rarefaction that eventually develop into a classic N-wave configuration. This configuration ultimately propagates into the heliosphere as a coherent structure and the entire system eventually settles to a quasi-steady wind solution. In addition to simulating the fluid evolution we also calculate the time-dependent non-equilibrium ionization of oxygen in real time in order to construct in situ diagnostics of the conditions near the reconnection site. This idealized description of the plasma dynamics along a newly-opened magnetic field line provides a baseline for predicting and interpreting the implications of interchange reconnection for the slow solar wind. Notably, the density and velocity within the expanding N-wave are generally enhanced over the ambient wind, as is the O7+/O6+ ionization ratio, which exhibits a discontinuity across the reconnection site that is transported by the flow and arrives later than the propagating N-wave.