Browsing by Author "Lin, Xihui"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A Crowdsourcing Approach to Developing and Assessing Prediction Algorithms for AML Prognosis(Public Library of Science, 2016) Noren, David P.; Long, Byron L.; Norel, Raquel; Rrhissorrakrai, Kahn; Hess, Kenneth; Hu, Chenyue Wendy; Bisberg, Alex J.; Schultz, Andre; Engquist, Erik; Liu, Li; Lin, Xihui; Chen, Gregory M.; Xie, Honglei; Hunter, Geoffrey A.M.; Boutros, Paul C.; Stepanov, Oleg; DREAM 9 AML-OPC Consortium; Norman, Thea; Friend, Stephen H.; Stolovitzky, Gustavo; Kornblau, Steven; Qutub, Amina A.Acute Myeloid Leukemia (AML) is a fatal hematological cancer. The genetic abnormalities underlying AML are extremely heterogeneous among patients, making prognosis and treatment selection very difficult. While clinical proteomics data has the potential to improve prognosis accuracy, thus far, the quantitative means to do so have yet to be developed. Here we report the results and insights gained from the DREAM 9 Acute Myeloid Prediction Outcome Prediction Challenge (AML-OPC), a crowdsourcing effort designed to promote the development of quantitative methods for AML prognosis prediction. We identify the most accurate and robust models in predicting patient response to therapy, remission duration, and overall survival. We further investigate patient response to therapy, a clinically actionable prediction, and find that patients that are classified as resistant to therapy are harder to predict than responsive patients across the 31 models submitted to the challenge. The top two performing models, which held a high sensitivity to these patients, substantially utilized the proteomics data to make predictions. Using these models, we also identify which signaling proteins were useful in predicting patient therapeutic response.Item Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease(Elsevier, 2016) Allen, Genevera I.; Amoroso, Nicola; Anghel, Catalina; Balagurusamy, Venkat; Bare, Christopher J.; Beaton, Derek; Bellotti, Roberto; Bennett, David A.; Boehme, Kevin L.; Boutros, Paul C.; Caberlotto, Laura; Caloian, Cristian; Campbell, Frederick; Neto, Elias Chaibub; Chang, Yu-Chuan; Chen, Beibei; Chen, Chien-Yu; Chien, Ting-Ying; Clark, Tim; Das, Sudeshna; Davatzikos, Christos; Deng, Jieyao; Dillenberger, Donna; Dobson, Richard J.B.; Dong, Qilin; Doshi, Jimit; Duma, Denise; Errico, Rosangela; Erus, Guray; Everett, Evan; Fardo, David W.; Friend, Stephen H.; Frӧhlich, Holger; Gan, Jessica; St George-Hyslop, Peter; Ghosh, Satrajit S.; Glaab, Enrico; Green, Robert C.; Guan, Yuanfang; Hong, Ming-Yi; Huang, Chao; Hwang, Jinseub; Ibrahim, Joseph; Inglese, Paolo; Iyappan, Anandhi; Jiang, Qijia; Katsumata, Yuriko; Kauwe, John S.K.; Klein, Arno; Kong, Dehan; Krause, Roland; Lalonde, Emilie; Lauria, Mario; Lee, Eunjee; Lin, Xihui; Liu, Zhandong; Livingstone, Julie; Logsdon, Benjamin A.; Lovestone, Simon; Ma, Tsung-wei; Malhotra, Ashutosh; Mangravite, Lara M.; Maxwell, Taylor J.; Merrill, Emily; Nagorski, John; Namasivayam, Aishwarya; Narayan, Manjari; Naz, Mufassra; Newhouse, Stephen J.; Norman, Thea C.; Nurtdinov, Ramil N.; Oyang, Yen-Jen; Pawitan, Yudi; Peng, Shengwen; Peters, Mette A.; Piccolo, Stephen R.; Praveen, Paurush; Priami, Corrado; Sabelnykova, Veronica Y.; Senger, Philipp; Shen, Xia; Simmons, Andrew; Sotiras, Aristeidis; Stolovitzky, Gustavo; Tangaro, Sabina; Tateo, Andrea; Tung, Yi-An; Tustison, Nicholas J.; Varol, Erdem; Vradenburg, George; Weiner, Michael W.; Xiao, Guanghua; Xie, Lei; Xie, Yang; Xu, Jia; Yang, Hojin; Zhan, Xiaowei; Zhou, Yunyun; Zhu, Fan; Zhu, Hongtu; Zhu, Shanfeng; Alzheimer’s Disease Neuroimaging InitiativeIdentifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis and prevention therapies in Alzheimer's disease. The Alzheimer's disease DREAM Challenge was designed as a computational crowdsourced project to benchmark the current state-of-the-art in predicting cognitive outcomes in Alzheimer's disease based on high dimensional, publicly available genetic and structural imaging data. This meta-analysis failed to identify a meaningful predictor developed from either data modality, suggesting that alternate approaches should be considered for prediction of cognitive performance.