Browsing by Author "Li, Chengbo"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item A Compressive Sensing and Unmixing Scheme for Hyperspectral Data Processing(2011-01) Li, Chengbo; Sun, Ting; Kelly, Kevin; Zhang, YinHyperspectral data processing typically demands enormous computational resources in terms of storage, computation and I/O throughputs, especially when real-time processing is desired. In this paper, we investigate a low-complexity scheme for hyperspectral data compression and reconstruction. In this scheme, compressed hyperspectral data are acquired directly by a device similar to the single-pixel camera based on the principle of compressive sensing. To decode the compressed data, we propose a numerical procedure to directly compute the unmixed abundance fractions of given endmembers, completely bypassing high-complexity tasks involving the hyperspectral data cube itself. The reconstruction model is to minimize the total variational of the abundance fractions subject to a pre-processed fidelity equation with a significantly reduced size, and other side constraints. An augmented Lagrangian type algorithm is developed to solve this model. We conduct extensive numerical experiments to demonstrate the feasibility and efficiency of the proposed approach, using both synthetic data and hardware-measured data. Experimental and computational evidence obtained from this study indicates that the proposed scheme has a high potential in real-world applications.Item An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing(2010) Li, Chengbo; Zhang, YinIn this thesis, I propose and study an efficient algorithm for solving a class of compressive sensing problems with total variation regularization. This research is motivated by the need for efficient solvers capable of restoring images to a high quality captured by the single pixel camera developed in the ECE department of Rice University. Based on the ideas of the augmented Lagrangian method and alternating minimization to solve subproblems, I develop an efficient and robust algorithm called TVAL3. TVAL3 is compared favorably with other widely used algorithms in terms of reconstruction speed and quality. Convincing numerical results are presented to show that TVAL3 is suitable for the single pixel camera as well as many other applications.Item An Efficient Augmented Lagrangian Method with Applications to Total Variation Minimization(2012-07) Li, Chengbo; Yin, Wotao; Jiang, Hong; Zhang, YinBased on the classic augmented Lagrangian multiplier method, we propose, analyze and test an algorithm for solving a class of equality-constrained non-smooth optimization problems (chiefly but not necessarily convex programs) with a particular structure. The algorithm effectively combines an alternating direction technique with a nonmonotone line search to minimize the augmented Lagrangian function at each iteration. We establish convergence for this algorithm, and apply it to solving problems in image reconstruction with total variation regularization. We present numerical results showing that the resulting solver, called TVAL3, is competitive with, and often outperforms, other state-of-the-art solvers in the field.Item Compressive Sensing for 3D Data Processing Tasks: Applications, Models and Algorithms(2011-12) Li, ChengboCompressive sensing (CS) is a novel sampling methodology representing a paradigm shift from conventional data acquisition schemes. The theory of compressive sensing ensures that under suitable conditions compressible signals or images can be reconstructed from far fewer samples or measurements than what are required by the Nyquist rate. So far in the literature, most works on CS concentrate on one-dimensional or two-dimensional data. However, besides involving far more data, three-dimensional (3D) data processing does have particularities that require the development of new techniques in order to make successful transitions from theoretical feasibilities to practical capacities. This thesis studies several issues arising from the applications of the CS methodology to some 3D image processing tasks. Two specific applications are hyperspectral imaging and video compression where 3D images are either directly unmixed or recovered as a whole from CS samples. The main issues include CS decoding models, preprocessing techniques and reconstruction algorithms, as well as CS encoding matrices in the case of video compression. Our investigation involves three major parts. (1) Total variation (TV) regularization plays a central role in the decoding models studied in this thesis. To solve such models, we propose an efficient scheme to implement the classic augmented Lagrangian multiplier method and study its convergence properties. The resulting Matlab package TVAL3 is used to solve several models. Computational results show that, thanks to its low per-iteration complexity, the proposed algorithm is capable of handling realistic 3D image processing tasks. (2) Hyperspectral image processing typically demands heavy computational resources due to an enormous amount of data involved. We investigate low-complexity procedures to unmix, sometimes blindly, CS compressed hyperspectral data to directly obtain material signatures and their abundance fractions, bypassing the high-complexity task of reconstructing the image cube itself. (3) To overcome the "cliff effect" suffered by current video coding schemes, we explore a compressive video sampling framework to improve scalability with respect to channel capacities. We propose and study a novel multi-resolution CS encoding matrix, and a decoding model with a TV-DCT regularization function. Extensive numerical results are presented, obtained from experiments that use not only synthetic data, but also real data measured by hardware. The results establish feasibility and robustness, to various extent, of the proposed 3D data processing schemes, models and algorithms. There still remain many challenges to be further resolved in each area, but hopefully the progress made in this thesis will represent a useful first step towards meeting these challenges in the future.Item Compressive Sensing for 3D Data Processing Tasks: Applications, Models and Algorithms(2012) Li, Chengbo; Zhang, YinCompressive sensing (CS) is a novel sampling methodology representing a paradigm shift from conventional data acquisition schemes. The theory of compressive sensing ensures that under suitable conditions compressible signals or images can be reconstructed from far fewer samples or measurements than what are required by the Nyquist rate. So far in the literature, most works on CS concentrate on one-dimensional or two-dimensional data. However, besides involving far more data, three-dimensional (3D) data processing does have particularities that require the development of new techniques in order to make successful transitions from theoretical feasibilities to practical capacities. This thesis studies several issues arising from the applications of the CS methodology to some 3D image processing tasks. Two specific applications are hyperspectral imaging and video compression where 3D images are either directly unmixed or recovered as a whole from CS samples. The main issues include CS decoding models, preprocessing techniques and reconstruction algorithms, as well as CS encoding matrices in the case of video compression. Our investigation involves three major parts. (1) Total variation (TV) regularization plays a central role in the decoding models studied in this thesis. To solve such models, we propose an efficient scheme to implement the classic augmented Lagrangian multiplier method and study its convergence properties. The resulting Matlab package TVAL3 is used to solve several models. Computational results show that, thanks to its low per-iteration complexity, the proposed algorithm is capable of handling realistic 3D image processing tasks. (2) Hyperspectral image processing typically demands heavy computational resources due to an enormous amount of data involved. We investigate low-complexity procedures to unmix, sometimes blindly, CS compressed hyperspectral data to directly obtain material signatures and their abundance fractions, bypassing the high-complexity task of reconstructing the image cube itself. (3) To overcome the "cliff effect" suffered by current video coding schemes, we explore a compressive video sampling framework to improve scalability with respect to channel capacities. We propose and study a novel multi-resolution CS encoding matrix, and a decoding model with a TV-DCT regularization function. Extensive numerical results are presented, obtained from experiments that use not only synthetic data, but also real data measured by hardware. The results establish feasibility and robustness, to various extent, of the proposed 3D data processing schemes, models and algorithms. There still remain many challenges to be further resolved in each area, but hopefully the progress made in this thesis will represent a useful first step towards meeting these challenges in the future.Item A New Compressive Video Sensing Framework for Mobile Broadcast(IEEE, 2013-03) Li, Chengbo; Jiang, Hong; Wilford, Paul; Zhang, Yin; Scheutzow, MikeA new video coding method based on compressive sampling is proposed. In this method, a video is coded using compressive measurements on video cubes. Video reconstruction is performed by minimization of total variation (TV) of the pixelwise discrete cosine transform coefficients along the temporal direction. A new reconstruction algorithm is developed from TVAL3, an efficient TV minimization algorithm based on the alternating minimization and augmented Lagrangian methods. Video coding with this method is inherently scalable, and has applications in mobile broadcast.