Browsing by Author "Leamy, Michael J."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Wave-based analysis of jointed elastic bars: nonlinear periodic response(Springer Nature, 2022) Balaji, Nidish Narayanaa; Brake, Matthew R.W.; Leamy, Michael J.In this paper, we develop two wave-based approaches for predicting the nonlinear periodic response of jointed elastic bars. First, we present a nonlinear wave-based vibration approach (WBVA) for studying jointed systems informed by re-usable, perturbation-derived scattering functions. This analytical approach can be used to predict the steady-state, forced response of jointed elastic bar structures incorporating any number and variety of nonlinear joints. As a second method, we present a nonlinear Plane-Wave Expansion (PWE) approach for analyzing periodic response in the same jointed bar structures. Both wave-based approaches have advantages and disadvantages when compared side-by-side. The WBVA results in a minimal set of equations and is re-usable following determination of the reflection and transmission functions, while the PWE formulation can be easily applied to new joint models and maintains solution accuracy to higher levels of nonlinearity. For example cases of two and three bars connected by linearly damped joints with linear and cubic stiffness, the two wave-based approaches accurately predict the expected Duffing-like behavior in which multiple periodic responses occur in the near-resonant regime, in close agreement with reference finite element simulations. Lastly, we discuss extensions of the work to jointed structures composed of beam-like members, and propose follow-on studies addressing opportunities identified in the application of the methods presented.Item Wave-based analysis of jointed elastic bars: stability of nonlinear solutions(Springer Nature, 2022) Balaji, Nidish Narayanaa; Brake, Matthew R.W.; Leamy, Michael J.In this paper we develop two new approaches for directly assessing stability of nonlinear wave-based solutions, with application to jointed elastic bars. In the first stability approach, we strain a stiffness parameter and construct analytical stability boundaries using a wave-based method. Not only does this accurately determine stability of the periodic solutions found in the example case of two bars connected by a nonlinear joint, but it directly governs the response and stability of parametrically forced continuous systems without resorting to discretization, a new development in of itself. In the second stability approach, we pose a perturbation eigenproblem residue (PER) and show that changes in the sign of the PER locate critical points where stability changes from stable to unstable, and vice-versa. Lastly, we discuss follow-on research using the developed stability approaches. In particular, we identify an opportunity to study stability around internal resonance, and then identify a need to further develop and interpret the PER approach to directly predict stability.