Browsing by Author "Law, Colin Christian"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Currents and magnetic field structures in the dayside solar wind interaction with Venus and Mars(1996) Law, Colin Christian; Cloutier, Paul A.The solar wind interaction with the non-magnetic Venerean ionospheric obstacle is unique. Ionospheric models of this interaction have primarily been in two dimensions that do not allow for changes in the orientation of the solar wind magnetic field near the obstacle. Analysis of high resolution magnetic field data from the Pioneer Venus Orbiter spacecraft has revealed field rotations that are observed to occur in conjunction with the dayside ionopause. These rotations are a result of the velocity shear at the ionopause and indicate the alignment of the magnetic field with the radial day to night flow of ionospheric plasma. A new configuration of the dayside magnetic field draping has been derived from these results. In addition, a new current system to account for this changing field orientation has been determined and is discussed in relation to current systems derived from previous models. These new aspects of the dayside solar wind interaction at Venus can be applied to other similar solar system objects. Assuming Mars also represents a non-magnetic obstacle to the flow, as past experimental observations indicate, the field diagnostics discovered here make it possible to probe the structure of the Martian ionosphere using magnetometer data in the absence of ion mass spectrometer data. These results will play a major role in predictive modeling and data analysis for future Mars missions.Item Observations of magnetic signatures and structure in the dayside ionosphere of Venus(1993) Law, Colin Christian; Cloutier, Paul A.Present models of the Venus solar wind interaction do not allow for changes in the orientation of the field as you approach the planet. Analysis of high resolution magnetic field data from the Pioneer Venus Orbiter spacecraft has revealed two distinct field rotations that are observed to occur in conjunction with the dayside ionosphere and ionopause. These rotations are a result of the velocity shear at the ionopause and indicate an alignment of the magnetic field with the day to night ionospheric plasma flow. From these results a new configuration of the dayside field draping has been determined. In addition, the field diagnostics discovered here can be used to probe the ionosphere of Mars which may otherwise go unobserved due to a lack of ion instrumentation onboard the Mars Observer spacecraft.