Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kyriazis, George"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Near Best Tree Approximation
    (2002-01-15) Baraniuk, Richard G.; DeVore, Ronald A.; Kyriazis, George; Yu, Xiang Ming; Center for Multimedia Communications (http://cmc.rice.edu/); Digital Signal Processing (http://dsp.rice.edu/)
    Tree approximation is a form of nonlinear wavelet approximation that appears naturally in applications such as image compression and entropy encoding. The distinction between tree approximation and the more familiar n-term wavelet approximation is that the wavelets appearing in teh appromant are required to align themselves in a certain connected tree structure. This makes their positions easy to encode. Previous work [CDGO], [CDDD] has established upper bounds for the error of tree approximation for certain (Besov) classes of functions. The present paper, in contrast, studies tree approximation of individual functions with the aim of characterizing those functions with a rpescribed approximation error. This accomplished in the case that the approximation error is measure in L2, or in the case p not equal to 2, in the Besove spaces, which is close to (but not the same as) Lp. Our characterization of functions with a prescribed approximation order in these cases is given in terms of a certain maximal function applied to the wavelet coefficients.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892