Browsing by Author "Kosynkin, D.V."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Ferromagnetism in Graphene Nanoribbons: Split versus Oxidative Unzipped Ribbons(American Chemical Society, 2012) Rao, S.S.; Jammalamadaka, S. Narayana; Stesmans, A.; Moshchalkov, V.V.; van Tol, J.; Kosynkin, D.V.; Higginbotham, A.; Tour, J.M.; Smalley Institute for Nanoscale Science and TechnologyTwo types of graphene nanoribbons: (a) potassium-split graphene nanoribbons (GNRs), and (b) oxidative unzipped and chemically converted graphene nanoribbons (CCGNRs) were investigated for their magnetic properties using the combination of static magnetization and electron spin resonance measurements. The two types of ribbons possess remarkably different magnetic properties. While a low-temperature ferromagnet-like feature is observed in both types of ribbons, such room-temperature feature persists only in potassium-split ribbons. The GNRs show negative exchange bias, but the CCGNRs exhibit a モpositive exchange biasヤ. Electron spin resonance measurements suggest that the carbon-related defects may be responsible for the observed magnetic behavior in both types of ribbons. Furthermore, information on the proton hyperfine coupling strength has been obtained from hyperfine sublevel correlation experiments performed on the GNRs. Electron spin resonance finds no evidence for the presence of potassium (cluster) related signals, pointing to the intrinsic magnetic nature of the ribbons. Our combined experimental results may indicate the coexistence of ferromagnetic clusters with antiferromagnetic regions leading to disordered magnetic phase. We discuss the possible origin of the observed contrast in the magnetic behaviors of the two types of ribbons studied.Item Magnetic defects in chemically converted graphene nanoribbons: electron spin resonance investigation(AIP Publishing LLC, 2014) Singamaneni, Srinivasa Rao; Stesmans, Andre; van Tol, Johan; Kosynkin, D.V.; Tour, James M.; Smalley Institute for Nanoscale Science and TechnologyElectronic spin transport properties of graphene nanoribbons (GNRs) are influenced by the presence of adatoms, adsorbates and edge functionalization. To improve the understanding of the factors that influence the spin properties of GNRs, local (element) spin-sensitive techniques such as electron spin resonance (ESR) spectroscopy are important for spintronics applications. Here, we present results of multi-frequency continuous wave (CW), pulse and hyperfine sublevel correlation (HYSCORE) ESR spectroscopy measurements performed on oxidatively unzipped graphene nanoribbons (GNRs), which were subsequently chemically converted (CCGNRs) with hydrazine. ESR spectra at 336 GHz reveal an isotropic ESR signal from the CCGNRs, of which the temperature dependence of its line width indicates the presence of localized unpaired electronic states. Upon functionalization of CCGNRs with 4-nitrobenzene diazonium tetrafluoroborate, the ESR signal is found to be 2 times narrower than that of pristine ribbons. NH3 adsorption/desorption on CCGNRs is shown to narrow the signal, while retaining the signal intensity and g value. The electron spin-spin relaxation process at 10 K is found to be characterized by slow (163 ns) and fast (39 ns) components. HYSCORE ESR data demonstrate the explicit presence of protons and 13C atoms. With the provided identification of intrinsic point magnetic defects such as proton and 13C has been reported, which are roadblocks to spin travel in graphene-based materials, this work could help in advancing the present fundamental understanding on the edge-spin (or magnetic)-based transport properties of CCGNRs.