Browsing by Author "Knight, Mark W."
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Aluminum Nanocrystals(American Chemical Society, 2015) McClain, Michael J.; Schlather, Andrea E.; Ringe, Emilie; King, Nicholas S.; Liu, Lifei; Manjavacas, Alejandro; Knight, Mark W.; Kumar, Ish; Whitmire, Kenton; Everitt, Henry O.; Nordlander, Peter; Halas, Naomi J.; Laboratory for NanophotonicsWe demonstrate the facile synthesis of high purity aluminum nanocrystals over a range of controlled sizes from 70 to 220 nm diameter with size control achieved through a simple modification of solvent ratios in the reaction solution. The monodisperse, icosahedral, and trigonal bipyramidal nanocrystals are air-stable for weeks, due to the formation of a 2-4 nm thick passivating oxide layer on their surfaces. We show that the nanocrystals support size-dependent ultraviolet and visible plasmon modes, providing a far more sustainable alternative to gold and silver nanoparticles currently in widespread use.Item Au Nanomatryoshkas as Efficient Near-Infrared Photothermal Transducers for Cancer Treatment: Benchmarking against Nanoshells(American Chemical Society, 2014) Ayala-Orozco, Ciceron; Urban, Cordula; Knight, Mark W.; Urban, Alexander Skyrme; Neumann, Oara; Bishnoi, Sandra W.; Mukherjee, Shaunak; Goodman, Amanda M.; Charron, Heather; Mitchell, Tamika; Shea, Martin; Roy, Ronita; Nanda, Sarmistha; Schiff, Rachel; Halas, Naomi J.; Joshi, AmitAu nanoparticles with plasmon resonances in the near-infrared (NIR) region of the spectrum efficiently convert light into heat, a property useful for the photothermal ablation of cancerous tumors subsequent to nanoparticle uptake at the tumor site. A critical aspect of this process is nanoparticle size, which influences both tumor uptake and photothermal efficiency. Here, we report a direct comparative study of ∼90 nm diameter Au nanomatryoshkas (Au/SiO2/Au) and ∼150 nm diameter Au nanoshells for photothermal therapeutic efficacy in highly aggressive triple negative breast cancer (TNBC) tumors in mice. Au nanomatryoshkas are strong light absorbers with 77% absorption efficiency, while the nanoshells are weaker absorbers with only 15% absorption efficiency. After an intravenous injection of Au nanomatryoshkas followed by a single NIR laser dose of 2 W/cm2 for 5 min, 83% of the TNBC tumor-bearing mice appeared healthy and tumor free >60 days later, while only 33% of mice treated with nanoshells survived the same period. The smaller size and larger absorption cross section of Au nanomatryoshkas combine to make this nanoparticle more effective than Au nanoshells for photothermal cancer therapy.Item Symmetry breaking in plasmonic nanostructures(2008) Knight, Mark W.; Halas, Naomi J.The plasmonic properties of metallodielectric nanostructures exhibit a highly sensitive dependence on geometry due to the interaction between primitive plasmon modes associated with the surfaces of the nanoparticle. Breaking symmetry increases the interactions between plasmon modes giving rise to modified, and altogether new, plasmonic features. This thesis examines the effects of breaking symmetry on three variants of a core-shell nanoparticle and a nanoparticle-nanowire plasmonic waveguide. For asymmetric core-shell nanoparticles, the far field absorption and scattering properties and the near field enhancements depend strongly on the degree of asymmetry. For nanowires, adding a vicinal nanoparticle breaks cylindrical symmetry and permits polarization-dependent coupling of visible light to propagating wire plasmons. These results offer a potential strategy for tailoring the near and far field properties of plasmonic nanoparticle systems for specific applications including high performance surface-enhanced spectroscopy, bioimaging, nanoparticle-based therapeutics, and subwavelength nanoantennae for coupling into extreme subwavelength waveguides.Item The Surprising in Vivo Instability of Near-IR-Absorbing Hollow Au-Ag Nanoshells(American Chemical Society, 2014) Goodman, Amanda M.; Cao, Yang; Urban, Cordula; Neumann, Oara; Ayala-Orozco, Ciceron; Knight, Mark W.; Joshi, Amit; Nordlander, Peter; Halas, Naomi J.Photothermal ablation based on resonant illumination of near-infrared-absorbing noble metal nanoparticles that have accumulated in tumors is a highly promising cancer therapy, currently in multiple clinical trials. A crucial aspect of this therapy is the nanoparticle size for optimal tumor uptake. A class of nanoparticles known as hollow Au (or Au–Ag) nanoshells (HGNS) is appealing because near-IR resonances are achievable in this system with diameters less than 100 nm. However, in this study, we report a surprising finding that in vivo HGNS are unstable, fragmenting with the Au and the remnants of the sacrificial Ag core accumulating differently in various organs. We synthesized 43, 62, and 82 nm diameter HGNS through a galvanic replacement reaction, with nanoparticles of all sizes showing virtually identical NIR resonances at ∼800 nm. A theoretical model indicated that alloying, residual Ag in the nanoparticle core, nanoparticle porosity, and surface defects all contribute to the presence of the plasmon resonance at the observed wavelength, with the major contributing factor being the residual Ag. While PEG functionalization resulted in stable nanoparticles under laser irradiation in solution, an anomalous, strongly element-specific biodistribution observed in tumor-bearing mice suggests that an avid fragmentation of all three sizes of nanoparticles occurred in vivo. Stability studies across a wide range of pH environments and in serum confirmed HGNS fragmentation. These results show that NIR resonant HGNS contain residual Ag, which does not stay contained within the HGNS in vivo. This demonstrates the importance of tracking both materials of a galvanic replacement nanoparticle in biodistribution studies and of performing thorough nanoparticle stability studies prior to any intended in vivo trial application.Item Thermoplasmonics: Quantifying Plasmonic Heating in Single Nanowires(American Chemical Society, 2014) Herzog, Joseph B.; Knight, Mark W.; Natelson, Douglas; Laboratory for NanophotonicsPlasmonic absorption of light can lead to significant local heating in metallic nanostructures, an effect that defines the sub-field of thermoplasmonics and has been leveraged in diverse applications from biomedical technology to optoelectronics. Quantitatively characterizing the resulting local temperature increase can be very challenging in isolated nanostructures. By measuring the optically-induced change in resistance of metal nanowires with a transverse plasmon mode, we quantitatively determine the temperature increase in single nanostructures, with the dependence on incident polarization clearly revealing the plasmonic heating mechanism. Computational modeling explains the resonant and nonresonant contributions to the optical heating and the dominant pathways for thermal transport. These results, obtained by combining electronic and optical measurements, place a bound on the role of optical heating in prior experiments, and suggest design guidelines for engineered structures meant to leverage such effects.