Browsing by Author "Kitajima, Masahiro"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item K-point longitudinal acoustic phonons are responsible for ultrafast intervalley scattering in monolayer MoSe2(Springer Nature, 2022) Bae, Soungmin; Matsumoto, Kana; Raebiger, Hannes; Shudo, Ken-ichi; Kim, Yong-Hoon; Handegård, Ørjan Sele; Nagao, Tadaaki; Kitajima, Masahiro; Sakai, Yuji; Zhang, Xiang; Vajtai, Robert; Ajayan, Pulickel; Kono, Junichiro; Takeda, Jun; Katayama, IkufumiIn transition metal dichalcogenides, valley depolarization through intervalley carrier scattering by zone-edge phonons is often unavoidable. Although valley depolarization processes related to various acoustic phonons have been suggested, their optical verification is still vague due to nearly degenerate phonon frequencies on acoustic phonon branches at zone-edge momentums. Here we report an unambiguous phonon momentum determination of the longitudinal acoustic (LA) phonons at the K point, which are responsible for the ultrafast valley depolarization in monolayer MoSe2. Using sub-10-fs-resolution pump-probe spectroscopy, we observed coherent phonons signals at both even and odd-orders of zone-edge LA mode involved in intervalley carrier scattering process. Our phonon-symmetry analysis and first-principles calculations reveal that only the LA phonon at the K point, as opposed to the M point, can produce experimental odd-order LA phonon signals from its nonlinear optical modulation. This work will provide momentum-resolved descriptions of phonon-carrier intervalley scattering processes in valleytronic materials.Item Terahertz Faraday and Kerr rotation spectroscopy of Bi1−xSbx films in high magnetic fields up to 30 tesla(American Physical Society, 2019) Li, Xinwei; Yoshioka, Katsumasa; Xie, Ming; Noe, G. Timothy; Lee, Woojoo; Marquez Peraca, Nicolas; Gao, Weilu; Hagiwara, Toshio; Handegård, Ørjan S.; Nien, Li-Wei; Nagao, Tadaaki; Kitajima, Masahiro; Nojiri, Hiroyuki; Shih, Chih-Kang; MacDonald, Allan H.; Katayama, Ikufumi; Takeda, Jun; Fiete, Gregory A.; Kono, JunichiroWe report results of terahertz Faraday and Kerr rotation spectroscopy measurements on thin films of Bi1−xSbx, an alloy system that exhibits a semimetal-to-topological-insulator transition as the Sb composition x increases. By using a single-shot time-domain terahertz spectroscopy setup combined with a table-top pulsed minicoil magnet, we conducted measurements in magnetic fields up to 30 T, observing distinctly different behaviors between semimetallic (x<0.07) and topological insulator (x>0.07) samples. Faraday and Kerr rotation spectra for the semimetallic films showed a pronounced dip that blueshifted with the magnetic field, whereas spectra for the topological insulator films were positive and featureless, increasing in amplitude with increasing magnetic field and eventually saturating at high fields (>20 T). Ellipticity spectra for the semimetallic films showed resonances, whereas the topological insulator films showed no detectable ellipticity. To explain these observations, we developed a theoretical model based on realistic band parameters and the Kubo formula for calculating the optical conductivity of Landau-quantized charge carriers. Our calculations quantitatively reproduced all experimental features, establishing that the Faraday and Kerr signals in the semimetallic films predominantly arise from bulk hole cyclotron resonances while the signals in the topological insulator films represent combined effects of surface carriers originating from multiple electron and hole pockets. These results demonstrate that the use of high magnetic fields in terahertz magnetopolarimetry, combined with detailed electronic structure and conductivity calculations, allows us to unambiguously identify and quantitatively determine unique contributions from different species of carriers of topological and nontopological nature in Bi1−xSbx.