Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "King, Michael R."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Superhydrophobic Array Devices for the Enhanced Formation of 3D Cancer Models
    (American Chemical Society, 2024) Lopez-Cavestany, Maria; Wright, Olivia A.; Reckhorn, Noah T.; Carter, Alexandria T.; Jayawardana, Kalana; Nguyen, Tin; Briggs, Dayrl P.; Koktysh, Dmitry S.; Esteban Linares, Alberto; Li, Deyu; King, Michael R.; Bioengineering
    During the metastatic cascade, cancer cells travel through the bloodstream as circulating tumor cells (CTCs) to a secondary site. Clustered CTCs have greater shear stress and treatment resistance, yet their biology remains poorly understood. We therefore engineered a tunable superhydrophobic array device (SHArD). The SHArD-C was applied to culture a clinically relevant model of CTC clusters. Using our device, we cultured a model of cancer cell aggregates of various sizes with immortalized cancer cell lines. These exhibited higher E-cadherin expression and are significantly more capable of surviving high fluid shear stress-related forces compared to single cells and model clusters grown using the control method, helping to explain why clustering may provide a metastatic advantage. Additionally, the SHArD-S, when compared with the AggreWell 800 method, provides a more consistent spheroid-forming device culturing reproducible sizes of spheroids for multiple cancer cell lines. Overall, we designed, fabricated, and validated an easily tunable engineered device which grows physiologically relevant three-dimensional (3D) cancer models containing tens to thousands of cells.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892