Browsing by Author "Kim, Jae-Hwan"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item A wirelessly programmable, skin-integrated thermo-haptic stimulator system for virtual reality(National Academy of Sciences, 2024) Kim, Jae-Hwan; Vázquez-Guardado, Abraham; Luan, Haiwen; Kim, Jin-Tae; Yang, Da Som; Zhang, Haohui; Chang, Jan-Kai; Yoo, Seonggwang; Park, Chanho; Wei, Yuanting; Christiansen, Zach; Kim, Seungyeob; Avila, Raudel; Kim, Jong Uk; Lee, Young Joong; Shin, Hee-Sup; Zhou, Mingyu; Jeon, Sung Woo; Baek, Janice Mihyun; Lee, Yujin; Kim, So Young; Lim, Jaeman; Park, Minsu; Jeong, Hyoyoung; Won, Sang Min; Chen, Renkun; Huang, Yonggang; Jung, Yei Hwan; Yoo, Jae-Young; Rogers, John A.Sensations of heat and touch produced by receptors in the skin are of essential importance for perceptions of the physical environment, with a particularly powerful role in interpersonal interactions. Advances in technologies for replicating these sensations in a programmable manner have the potential not only to enhance virtual/augmented reality environments but they also hold promise in medical applications for individuals with amputations or impaired sensory function. Engineering challenges are in achieving interfaces with precise spatial resolution, power-efficient operation, wide dynamic range, and fast temporal responses in both thermal and in physical modulation, with forms that can extend over large regions of the body. This paper introduces a wireless, skin-compatible interface for thermo-haptic modulation designed to address some of these challenges, with the ability to deliver programmable patterns of enhanced vibrational displacement and high-speed thermal stimulation. Experimental and computational investigations quantify the thermal and mechanical efficiency of a vertically stacked design layout in the thermo-haptic stimulators that also supports real-time, closed-loop control mechanisms. The platform is effective in conveying thermal and physical information through the skin, as demonstrated in the control of robotic prosthetics and in interactions with pressure/temperature-sensitive touch displays.