Browsing by Author "Kim, Eddie"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Olivar: towards automated variant aware primer design for multiplex tiled amplicon sequencing of pathogens(Springer Nature, 2024) Wang, Michael X.; Lou, Esther G.; Sapoval, Nicolae; Kim, Eddie; Kalvapalle, Prashant; Kille, Bryce; Elworth, R. A. Leo; Liu, Yunxi; Fu, Yilei; Stadler, Lauren B.; Treangen, Todd J.Tiled amplicon sequencing has served as an essential tool for tracking the spread and evolution of pathogens. Over 15 million complete SARS-CoV-2 genomes are now publicly available, most sequenced and assembled via tiled amplicon sequencing. While computational tools for tiled amplicon design exist, they require downstream manual optimization both computationally and experimentally, which is slow and costly. Here we present Olivar, a first step towards a fully automated, variant-aware design of tiled amplicons for pathogen genomes. Olivar converts each nucleotide of the target genome into a numeric risk score, capturing undesired sequence features that should be avoided. In a direct comparison with PrimalScheme, we show that Olivar has fewer mismatches overlapping with primers and predicted PCR byproducts. We also compare Olivar head-to-head with ARTIC v4.1, the most widely used primer set for SARS-CoV-2 sequencing, and show Olivar yields similar read mapping rates (~90%) and better coverage to the manually designed ARTIC v4.1 amplicons. We also evaluate Olivar on real wastewater samples and found that Olivar has up to 3-fold higher mapping rates while retaining similar coverage. In summary, Olivar automates and accelerates the generation of tiled amplicons, even in situations of high mutation frequency and/or density. Olivar is available online as a web application at https://olivar.rice.edu and can be installed locally as a command line tool with Bioconda. Source code, installation guide, and usage are available at https://github.com/treangenlab/Olivar.Item Parsnp 2.0: scalable core-genome alignment for massive microbial datasets(Oxford University Press, 2024) Kille, Bryce; Nute, Michael G; Huang, Victor; Kim, Eddie; Phillippy, Adam M; Treangen, Todd JSince 2016, the number of microbial species with available reference genomes in NCBI has more than tripled. Multiple genome alignment, the process of identifying nucleotides across multiple genomes which share a common ancestor, is used as the input to numerous downstream comparative analysis methods. Parsnp is one of the few multiple genome alignment methods able to scale to the current era of genomic data; however, there has been no major release since its initial release in 2014.To address this gap, we developed Parsnp v2, which significantly improves on its original release. Parsnp v2 provides users with more control over executions of the program, allowing Parsnp to be better tailored for different use-cases. We introduce a partitioning option to Parsnp, which allows the input to be broken up into multiple parallel alignment processes which are then combined into a final alignment. The partitioning option can reduce memory usage by over 4× and reduce runtime by over 2×, all while maintaining a precise core-genome alignment. The partitioning workflow is also less susceptible to complications caused by assembly artifacts and minor variation, as alignment anchors only need to be conserved within their partition and not across the entire input set. We highlight the performance on datasets involving thousands of bacterial and viral genomes.Parsnp v2 is available at https://github.com/marbl/parsnp.