Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kille, Bryce"

Now showing 1 - 7 of 7
Results Per Page
Sort Options
  • No Thumbnail Available
    Item
    Computer Science Rice Emerging Scholars Program (CS-RESP) coding track 2024
    (Rice University, 9/24/2024) Kille, Bryce; Myers, Risa; Actor, Jonas; National Science Foundation; Department of Computer Science; Computational Applied Mathematics & Operations Research
    Coding track material for Computer Science Rice Emerging Scholars (CS-RESP) program, summer 2024. This material is based upon work supported by the National Science Foundation under Grant No. 2315755.
  • Loading...
    Thumbnail Image
    Item
    Current progress and open challenges for applying deep learning across the biosciences
    (Springer Nature, 2022) Sapoval, Nicolae; Aghazadeh, Amirali; Nute, Michael G.; Antunes, Dinler A.; Balaji, Advait; Baraniuk, Richard; Barberan, C.J.; Dannenfelser, Ruth; Dun, Chen; Edrisi, Mohammadamin; Elworth, R.A. Leo; Kille, Bryce; Kyrillidis, Anastasios; Nakhleh, Luay; Wolfe, Cameron R.; Yan, Zhi; Yao, Vicky; Treangen, Todd J.; Bioengineering; Computer Science
    Deep Learning (DL) has recently enabled unprecedented advances in one of the grand challenges in computational biology: the half-century-old problem of protein structure prediction. In this paper we discuss recent advances, limitations, and future perspectives of DL on five broad areas: protein structure prediction, protein function prediction, genome engineering, systems biology and data integration, and phylogenetic inference. We discuss each application area and cover the main bottlenecks of DL approaches, such as training data, problem scope, and the ability to leverage existing DL architectures in new contexts. To conclude, we provide a summary of the subject-specific and general challenges for DL across the biosciences.
  • Loading...
    Thumbnail Image
    Item
    Minmers are a generalization of minimizers that enable unbiased local Jaccard estimation
    (Oxford University Press, 2023) Kille, Bryce; Garrison, Erik; Treangen, Todd J; Phillippy, Adam M
    The Jaccard similarity on k-mer sets has shown to be a convenient proxy for sequence identity. By avoiding expensive base-level alignments and comparing reduced sequence representations, tools such as MashMap can scale to massive numbers of pairwise comparisons while still providing useful similarity estimates. However, due to their reliance on minimizer winnowing, previous versions of MashMap were shown to be biased and inconsistent estimators of Jaccard similarity. This directly impacts downstream tools that rely on the accuracy of these estimates.To address this, we propose the minmer winnowing scheme, which generalizes the minimizer scheme by use of a rolling minhash with multiple sampled k-mers per window. We show both theoretically and empirically that minmers yield an unbiased estimator of local Jaccard similarity, and we implement this scheme in an updated version of MashMap. The minmer-based implementation is over 10 times faster than the minimizer-based version under the default ANI threshold, making it well-suited for large-scale comparative genomics applications.MashMap3 is available at https://github.com/marbl/MashMap.
  • Loading...
    Thumbnail Image
    Item
    Multiple genome alignment in the telomere-to-telomere assembly era
    (Springer Nature, 2022) Kille, Bryce; Balaji, Advait; Sedlazeck, Fritz J.; Nute, Michael; Treangen, Todd J.
    With the arrival of telomere-to-telomere (T2T) assemblies of the human genome comes the computational challenge of efficiently and accurately constructing multiple genome alignments at an unprecedented scale. By identifying nucleotides across genomes which share a common ancestor, multiple genome alignments commonly serve as the bedrock for comparative genomics studies. In this review, we provide an overview of the algorithmic template that most multiple genome alignment methods follow. We also discuss prospective areas of improvement of multiple genome alignment for keeping up with continuously arriving high-quality T2T assembled genomes and for unlocking clinically-relevant insights.
  • Loading...
    Thumbnail Image
    Item
    Olivar: towards automated variant aware primer design for multiplex tiled amplicon sequencing of pathogens
    (Springer Nature, 2024) Wang, Michael X.; Lou, Esther G.; Sapoval, Nicolae; Kim, Eddie; Kalvapalle, Prashant; Kille, Bryce; Elworth, R. A. Leo; Liu, Yunxi; Fu, Yilei; Stadler, Lauren B.; Treangen, Todd J.; Bioengineering; Civil and Environmental Engineering; Computer Science
    Tiled amplicon sequencing has served as an essential tool for tracking the spread and evolution of pathogens. Over 15 million complete SARS-CoV-2 genomes are now publicly available, most sequenced and assembled via tiled amplicon sequencing. While computational tools for tiled amplicon design exist, they require downstream manual optimization both computationally and experimentally, which is slow and costly. Here we present Olivar, a first step towards a fully automated, variant-aware design of tiled amplicons for pathogen genomes. Olivar converts each nucleotide of the target genome into a numeric risk score, capturing undesired sequence features that should be avoided. In a direct comparison with PrimalScheme, we show that Olivar has fewer mismatches overlapping with primers and predicted PCR byproducts. We also compare Olivar head-to-head with ARTIC v4.1, the most widely used primer set for SARS-CoV-2 sequencing, and show Olivar yields similar read mapping rates (~90%) and better coverage to the manually designed ARTIC v4.1 amplicons. We also evaluate Olivar on real wastewater samples and found that Olivar has up to 3-fold higher mapping rates while retaining similar coverage. In summary, Olivar automates and accelerates the generation of tiled amplicons, even in situations of high mutation frequency and/or density. Olivar is available online as a web application at https://olivar.rice.edu and can be installed locally as a command line tool with Bioconda. Source code, installation guide, and usage are available at https://github.com/treangenlab/Olivar.
  • Loading...
    Thumbnail Image
    Item
    Parsnp 2.0: scalable core-genome alignment for massive microbial datasets
    (Oxford University Press, 2024) Kille, Bryce; Nute, Michael G; Huang, Victor; Kim, Eddie; Phillippy, Adam M; Treangen, Todd J
    Since 2016, the number of microbial species with available reference genomes in NCBI has more than tripled. Multiple genome alignment, the process of identifying nucleotides across multiple genomes which share a common ancestor, is used as the input to numerous downstream comparative analysis methods. Parsnp is one of the few multiple genome alignment methods able to scale to the current era of genomic data; however, there has been no major release since its initial release in 2014.To address this gap, we developed Parsnp v2, which significantly improves on its original release. Parsnp v2 provides users with more control over executions of the program, allowing Parsnp to be better tailored for different use-cases. We introduce a partitioning option to Parsnp, which allows the input to be broken up into multiple parallel alignment processes which are then combined into a final alignment. The partitioning option can reduce memory usage by over 4× and reduce runtime by over 2×, all while maintaining a precise core-genome alignment. The partitioning workflow is also less susceptible to complications caused by assembly artifacts and minor variation, as alignment anchors only need to be conserved within their partition and not across the entire input set. We highlight the performance on datasets involving thousands of bacterial and viral genomes.Parsnp v2 is available at https://github.com/marbl/parsnp.
  • Loading...
    Thumbnail Image
    Item
    Rescuing low frequency variants within intra-host viral populations directly from Oxford Nanopore sequencing data
    (Springer Nature, 2022) Liu, Yunxi; Kearney, Joshua; Mahmoud, Medhat; Kille, Bryce; Sedlazeck, Fritz J.; Treangen, Todd J.
    Infectious disease monitoring on Oxford Nanopore Technologies (ONT) platforms offers rapid turnaround times and low cost. Tracking low frequency intra-host variants provides important insights with respect to elucidating within-host viral population dynamics and transmission. However, given the higher error rate of ONT, accurate identification of intra-host variants with low allele frequencies remains an open challenge with no viable computational solutions available. In response to this need, we present Variabel, a novel approach and first method designed for rescuing low frequency intra-host variants from ONT data alone. We evaluate Variabel on both synthetic data (SARS-CoV-2) and patient derived datasets (Ebola virus, norovirus, SARS-CoV-2); our results show that Variabel can accurately identify low frequency variants below 0.5 allele frequency, outperforming existing state-of-the-art ONT variant callers for this task. Variabel is open-source and available for download at: www.gitlab.com/treangenlab/variabel.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892