Browsing by Author "Khan, Uffaf"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Harshly Oxidized Activated Charcoal Enhances Protein Persulfidation with Implications for Neurodegeneration as Exemplified by Friedreich’s Ataxia(MDPI, 2024) Vo, Anh T. T.; Khan, Uffaf; Liopo, Anton V.; Mouli, Karthik; Olson, Kenneth R.; McHugh, Emily A.; Tour, James M.; Pooparayil Manoj, Madhavan; Derry, Paul J.; Kent, Thomas A.; Smalley-Curl Institute;Rice Advanced Materials Institute;The NanoCarbon CenterHarsh acid oxidation of activated charcoal transforms an insoluble carbon-rich source into water-soluble, disc structures of graphene decorated with multiple oxygen-containing functionalities. We term these pleiotropic nano-enzymes as “pleozymes”. A broad redox potential spans many crucial redox reactions including the oxidation of hydrogen sulfide (H2S) to polysulfides and thiosulfate, dismutation of the superoxide radical (O2−*), and oxidation of NADH to NAD+. The oxidation of H2S is predicted to enhance protein persulfidation—the attachment of sulfur to cysteine residues. Persulfidated proteins act as redox intermediates, and persulfidation protects proteins from irreversible oxidation and ubiquitination, providing an important means of signaling. Protein persulfidation is believed to decline in several neurological disorders and aging. Importantly, and consistent with the role of persulfidation in signaling, the master antioxidant transcription factor Nrf2 is regulated by Keap1’s persulfidation. Here, we demonstrate that pleozymes increased overall protein persulfidation in cells from apparently healthy individuals and from individuals with the mitochondrial protein mutation responsible for Friedreich’s ataxia. We further find that pleozymes specifically enhanced Keap1 persulfidation, with subsequent increased accumulation of Nrf2 and Nrf2’s antioxidant targets.Item Pleozymes: Pleiotropic Oxidized Carbon Nanozymes Enhance Cellular Metabolic Flexibility(MDPI, 2024) Vo, Anh T. T.; Mouli, Karthik; Liopo, Anton V.; Lorenzi, Philip; Tan, Lin; Wei, Bo; Martinez, Sara A.; McHugh, Emily A.; Tour, James M.; Khan, Uffaf; Derry, Paul J.; Kent, Thomas A.; Smalley-Curl Institute;Rice Advanced Materials Institute;The NanoCarbon CenterOur group has synthesized a pleiotropic synthetic nanozyme redox mediator we term a “pleozyme” that displays multiple enzymatic characteristics, including acting as a superoxide dismutase mimetic, oxidizing NADH to NAD+, and oxidizing H2S to polysulfides and thiosulfate. Benefits have been seen in acute and chronic neurological disease models. The molecule is sourced from coconut-derived activated charcoal that has undergone harsh oxidization with fuming nitric acid, which alters the structure and chemical characteristics, yielding 3–8 nm discs with broad redox potential. Prior work showed pleozymes localize to mitochondria and increase oxidative phosphorylation and glycolysis. Here, we measured cellular NAD+ and NADH levels after pleozyme treatment and observed increased total cellular NADH levels but not total NAD+ levels. A 13C-glucose metabolic flux analysis suggested pleozymes stimulate the generation of pyruvate and lactate glycolytically and from the tricarboxylic acid (TCA) cycle, pointing to malate decarboxylation. Analysis of intracellular fatty acid abundances suggests pleozymes increased fatty acid β-oxidation, with a concomitant increase in succinyl- and acetyl-CoA. Pleozymes increased total ATP, potentially via flexible enhancement of NAD+-dependent catabolic pathways such as glycolysis, fatty acid β-oxidation, and metabolic flux through the TCA cycle. These effects may be favorable for pathologies that compromise metabolism such as brain injury.