Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Keilty, Katherine Anne"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Modeling of laser-generated radiative blast waves, with applications to late-term supernova remnants
    (2003) Keilty, Katherine Anne; Liang, Edison P.
    The goal of laser astrophysics is to provide a means by which aspects of specific astrophysical phenomena can be reproduced in the laboratory. Although the hydrodynamic instabilities of early supernova remnants have already been studied using this method, the role of significant radiative losses in shock propagation (for example, in late-term remnants) has only been imperfectly modeled. This thesis introduces an improved self-similar analytic approach to radiative blast-wave evolution where the total amount of energy loss remains constant in proportion to the energy flux entering the shock front. The approximation is solved for the cases in which both energy loss from the shock front and heating of the shock (due to the presence of ionization precursors) are significant. Because this solution is independent of the exact method of cooling, it is appropriate for both the laboratory and astrophysical regimes. In addition, this thesis applies the analytic approximation to laboratory-produced radiative blast waves as well as to numerical models of these experimental blast waves. These results will allow for better design of laser-based experiments with further applications to astrophysical phenomena, as well as for an increase in the understanding of the challenges involved in scaling radiative phenomena between laboratory experiments and astrophysical theory.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892