Browsing by Author "Kaur, Parwinder"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item A pan-genome and chromosome-length reference genome of narrow-leafed lupin (Lupinus angustifolius) reveals genomic diversity and insights into key industry and biological traits(Wiley, 2022) Garg, Gagan; Kamphuis, Lars G.; Bayer, Philipp E.; Kaur, Parwinder; Dudchenko, Olga; Taylor, Candy M.; Frick, Karen M.; Foley, Rhonda C.; Gao, Ling-Ling; Aiden, Erez Lieberman; Edwards, David; Singh, Karam B.; Center for Theoretical Biological PhysicsNarrow-leafed lupin (NLL; Lupinus angustifolius) is a key rotational crop for sustainable farming systems, whose grain is high in protein content. It is a gluten-free, non-genetically modified, alternative protein source to soybean (Glycine max) and as such has gained interest as a human food ingredient. Here, we present a chromosome-length reference genome for the species and a pan-genome assembly comprising 55 NLL lines, including Australian and European cultivars, breeding lines and wild accessions. We present the core and variable genes for the species and report on the absence of essential mycorrhizal associated genes. The genome and pan-genomes of NLL and its close relative white lupin (Lupinus albus) are compared. Furthermore, we provide additional evidence supporting LaRAP2-7 as the key alkaloid regulatory gene for NLL and demonstrate the NLL genome is underrepresented in classical NLR disease resistance genes compared to other sequenced legume species. The NLL genomic resources generated here coupled with previously generated RNA sequencing datasets provide new opportunities to fast-track lupin crop improvement.Item A rapid, low-cost, and highly sensitive SARS-CoV-2 diagnostic based on whole-genome sequencing(Public Library of Science, 2023) Adastra, Per A.; Durand, Neva C.; Mitra, Namita; Pulido, Saul Godinez; Mahajan, Ragini; Blackburn, Alyssa; Colaric, Zane L.; Theisen, Joshua W. M.; Weisz, David; Dudchenko, Olga; Gnirke, Andreas; Rao, Suhas S. P.; Kaur, Parwinder; Aiden, Erez Lieberman; Aiden, Aviva Presser; Center for Theoretical Biological PhysicsEarly detection of SARS-CoV-2 infection is key to managing the current global pandemic, as evidence shows the virus is most contagious on or before symptom onset. Here, we introduce a low-cost, high-throughput method for diagnosing and studying SARS-CoV-2 infection. Dubbed Pathogen-Oriented Low-Cost Assembly & Re-Sequencing (POLAR), this method amplifies the entirety of the SARS-CoV-2 genome. This contrasts with typical RT-PCR-based diagnostic tests, which amplify only a few loci. To achieve this goal, we combine a SARS-CoV-2 enrichment method developed by the ARTIC Network (https://artic.network/) with short-read DNA sequencing and de novo genome assembly. Using this method, we can reliably (>95% accuracy) detect SARS-CoV-2 at a concentration of 84 genome equivalents per milliliter (GE/mL). The vast majority of diagnostic methods meeting our analytical criteria that are currently authorized for use by the United States Food and Drug Administration with the Coronavirus Disease 2019 (COVID-19) Emergency Use Authorization require higher concentrations of the virus to achieve this degree of sensitivity and specificity. In addition, we can reliably assemble the SARS-CoV-2 genome in the sample, often with no gaps and perfect accuracy given sufficient viral load. The genotypic data in these genome assemblies enable the more effective analysis of disease spread than is possible with an ordinary binary diagnostic. These data can also help identify vaccine and drug targets. Finally, we show that the diagnoses obtained using POLAR of positive and negative clinical nasal mid-turbinate swab samples 100% match those obtained in a clinical diagnostic lab using the Center for Disease Control’s 2019-Novel Coronavirus test. Using POLAR, a single person can manually process 192 samples over an 8-hour experiment at the cost of ~$36 per patient (as of December 7th, 2022), enabling a 24-hour turnaround with sequencing and data analysis time. We anticipate that further testing and refinement will allow greater sensitivity using this approach.Item Chromosome-length genome assembly and linkage map of a critically endangered Australian bird: the helmeted honeyeater(Oxford University Press, 2022) Robledo-Ruiz, Diana A.; Gan, Han Ming; Kaur, Parwinder; Dudchenko, Olga; Weisz, David; Khan, Ruqayya; Aiden, Erez Lieberman; Osipova, Ekaterina; Hiller, Michael; Morales, Hernán E.; Magrath, Michael J.L.; Clarke, Rohan H.; Sunnucks, Paul; Pavlova, Alexandra; Center for Theoretical Biological PhysicsThe helmeted honeyeater (Lichenostomus melanops cassidix) is a Critically Endangered bird endemic to Victoria, Australia. To aid its conservation, the population is the subject of genetic rescue. To understand, monitor, and modulate the effects of genetic rescue on the helmeted honeyeater genome, a chromosome-length genome and a high-density linkage map are required.We used a combination of Illumina, Oxford Nanopore, and Hi-C sequencing technologies to assemble a chromosome-length genome of the helmeted honeyeater, comprising 906 scaffolds, with length of 1.1 Gb and scaffold N50 of 63.8 Mb. Annotation comprised 57,181 gene models. Using a pedigree of 257 birds and 53,111 single-nucleotide polymorphisms, we obtained high-density linkage and recombination maps for 25 autosomes and Z chromosome. The total sex-averaged linkage map was 1,347 cM long, with the male map being 6.7% longer than the female map. Recombination maps revealed sexually dimorphic recombination rates (overall higher in males), with average recombination rate of 1.8 cM/Mb. Comparative analyses revealed high synteny of the helmeted honeyeater genome with that of 3 passerine species (e.g., 32 Hi-C scaffolds mapped to 30 zebra finch autosomes and Z chromosome). The genome assembly and linkage map suggest that the helmeted honeyeater exhibits a fission of chromosome 1A into 2 chromosomes relative to zebra finch. PSMC analysis showed a ∼15-fold decline in effective population size to ∼60,000 from mid- to late Pleistocene.The annotated chromosome-length genome and high-density linkage map provide rich resources for evolutionary studies and will be fundamental in guiding conservation efforts for the helmeted honeyeater.Item Chromosome-length genome assembly of Teladorsagia circumcincta – a globally important helminth parasite in livestock(Springer Nature, 2023) Hassan, Shamshad Ul; Chua, Eng Guan; Paz, Erwin A.; Tay, Chin Yen; Greeff, Johan C.; Palmer, Dieter G.; Dudchenko, Olga; Aiden, Erez Lieberman; Martin, Graeme B.; Kaur, Parwinder; Center for Theoretical Biological PhysicsGastrointestinal (GIT) helminthiasis is a global problem that affects livestock health, especially in small ruminants. One of the major helminth parasites of sheep and goats, Teladorsagia circumcincta, infects the abomasum and causes production losses, reductions in weight gain, diarrhoea and, in some cases, death in young animals. Control strategies have relied heavily on the use of anthelmintic medication but, unfortunately, T. circumcincta has developed resistance, as have many helminths. Vaccination offers a sustainable and practical solution, but there is no commercially available vaccine to prevent Teladorsagiosis. The discovery of new strategies for controlling T. circumcincta, such as novel vaccine targets and drug candidates, would be greatly accelerated by the availability of better quality, chromosome-length, genome assembly because it would allow the identification of key genetic determinants of the pathophysiology of infection and host-parasite interaction. The available draft genome assembly of T. circumcincta (GCA_002352805.1) is highly fragmented and thus impedes large-scale investigations of population and functional genomics.Item Chromosome-level genome of Schistosoma haematobium underpins genome-wide explorations of molecular variation(Public Library of Science, 2022) Stroehlein, Andreas J.; Korhonen, Pasi K.; Lee, V. Vern; Ralph, Stuart A.; Mentink-Kane, Margaret; You, Hong; McManus, Donald P.; Tchuenté, Louis-Albert Tchuem; Stothard, J. Russell; Kaur, Parwinder; Dudchenko, Olga; Aiden, Erez Lieberman; Yang, Bicheng; Yang, Huanming; Emery, Aidan M.; Webster, Bonnie L.; Brindley, Paul J.; Rollinson, David; Chang, Bill C.H.; Gasser, Robin B.; Young, Neil D.; Center for Theoretical Biological PhysicsUrogenital schistosomiasis is caused by the blood fluke Schistosoma haematobium and is one of the most neglected tropical diseases worldwide, afflicting > 100 million people. It is characterised by granulomata, fibrosis and calcification in urogenital tissues, and can lead to increased susceptibility to HIV/AIDS and squamous cell carcinoma of the bladder. To complement available treatment programs and break the transmission of disease, sound knowledge and understanding of the biology and ecology of S. haematobium is required. Hybridisation/introgression events and molecular variation among members of the S. haematobium-group might effect important biological and/or disease traits as well as the morbidity of disease and the effectiveness of control programs including mass drug administration. Here we report the first chromosome-contiguous genome for a well-defined laboratory line of this blood fluke. An exploration of this genome using transcriptomic data for all key developmental stages allowed us to refine gene models (including non-coding elements) and annotations, discover ‘new’ genes and transcription profiles for these stages, likely linked to development and/or pathogenesis. Molecular variation within S. haematobium among some geographical locations in Africa revealed unique genomic ‘signatures’ that matched species other than S. haematobium, indicating the occurrence of introgression events. The present reference genome (designated Shae.V3) and the findings from this study solidly underpin future functional genomic and molecular investigations of S. haematobium and accelerate systematic, large-scale population genomics investigations, with a focus on improved and sustained control of urogenital schistosomiasis.Item Emx2 underlies the development and evolution of marsupial gliding membranes(Springer Nature, 2024) Moreno, Jorge A.; Dudchenko, Olga; Feigin, Charles Y.; Mereby, Sarah A.; Chen, Zhuoxin; Ramos, Raul; Almet, Axel A.; Sen, Harsha; Brack, Benjamin J.; Johnson, Matthew R.; Li, Sha; Wang, Wei; Gaska, Jenna M.; Ploss, Alexander; Weisz, David; Omer, Arina D.; Yao, Weijie; Colaric, Zane; Kaur, Parwinder; Leger, Judy St; Nie, Qing; Mena, Alexandria; Flanagan, Joseph P.; Keller, Greta; Sanger, Thomas; Ostrow, Bruce; Plikus, Maksim V.; Kvon, Evgeny Z.; Aiden, Erez Lieberman; Mallarino, Ricardo; Center for Theoretical Biological PhysicsPhenotypic variation among species is a product of evolutionary changes to developmental programs1,2. However, how these changes generate novel morphological traits remains largely unclear. Here we studied the genomic and developmental basis of the mammalian gliding membrane, or patagium—an adaptative trait that has repeatedly evolved in different lineages, including in closely related marsupial species. Through comparative genomic analysis of 15 marsupial genomes, both from gliding and non-gliding species, we find that the Emx2 locus experienced lineage-specific patterns of accelerated cis-regulatory evolution in gliding species. By combining epigenomics, transcriptomics and in-pouch marsupial transgenics, we show that Emx2 is a critical upstream regulator of patagium development. Moreover, we identify different cis-regulatory elements that may be responsible for driving increased Emx2 expression levels in gliding species. Lastly, using mouse functional experiments, we find evidence that Emx2 expression patterns in gliders may have been modified from a pre-existing program found in all mammals. Together, our results suggest that patagia repeatedly originated through a process of convergent genomic evolution, whereby regulation of Emx2 was altered by distinct cis-regulatory elements in independently evolved species. Thus, different regulatory elements targeting the same key developmental gene may constitute an effective strategy by which natural selection has harnessed regulatory evolution in marsupial genomes to generate phenotypic novelty.Item Genomic signatures of barley breeding for environmental adaptation to the new continents(Wiley, 2023) Hu, Haifei; Wang, Penghao; Angessa, Tefera Tolera; Zhang, Xiao-Qi; Chalmers, Kenneth J.; Zhou, Gaofeng; Hill, Camilla Beate; Jia, Yong; Simpson, Craig; Fuller, John; Saxena, Alka; Al Shamaileh, Hadi; Iqbal, Munir; Chapman, Brett; Kaur, Parwinder; Dudchenko, Olga; Aiden, Erez Lieberman; Keeble-Gagnere, Gabriel; Westcott, Sharon; Leah, David; Tibbits, Josquin F.; Waugh, Robbie; Langridge, Peter; Varshney, Rajeev; He, Tianhua; Li, Chengdao; Center for Theoretical Biological PhysicsItem The swan genome and transcriptome, it is not all black and white(Springer Nature, 2023) Karawita, Anjana C.; Cheng, Yuanyuan; Chew, Keng Yih; Challagulla, Arjun; Kraus, Robert; Mueller, Ralf C.; Tong, Marcus Z. W.; Hulme, Katina D.; Bielefeldt-Ohmann, Helle; Steele, Lauren E.; Wu, Melanie; Sng, Julian; Noye, Ellesandra; Bruxner, Timothy J.; Au, Gough G.; Lowther, Suzanne; Blommaert, Julie; Suh, Alexander; McCauley, Alexander J.; Kaur, Parwinder; Dudchenko, Olga; Aiden, Erez; Fedrigo, Olivier; Formenti, Giulio; Mountcastle, Jacquelyn; Chow, William; Martin, Fergal J.; Ogeh, Denye N.; Thiaud-Nissen, Françoise; Howe, Kerstin; Tracey, Alan; Smith, Jacqueline; Kuo, Richard I.; Renfree, Marilyn B.; Kimura, Takashi; Sakoda, Yoshihiro; McDougall, Mathew; Spencer, Hamish G.; Pyne, Michael; Tolf, Conny; Waldenström, Jonas; Jarvis, Erich D.; Baker, Michelle L.; Burt, David W.; Short, Kirsty R.; Centre for Theoretical Biological PhysicsBackground: The Australian black swan (Cygnus atratus) is an iconic species with contrasting plumage to that of the closely related northern hemisphere white swans. The relative geographic isolation of the black swan may have resulted in a limited immune repertoire and increased susceptibility to infectious diseases, notably infectious diseases from which Australia has been largely shielded. Unlike mallard ducks and the mute swan (Cygnus olor), the black swan is extremely sensitive to highly pathogenic avian influenza. Understanding this susceptibility has been impaired by the absence of any available swan genome and transcriptome information. Results: Here, we generate the first chromosome-length black and mute swan genomes annotated with transcriptome data, all using long-read based pipelines generated for vertebrate species. We use these genomes and transcriptomes to show that unlike other wild waterfowl, black swans lack an expanded immune gene repertoire, lack a key viral pattern-recognition receptor in endothelial cells and mount a poorly controlled inflammatory response to highly pathogenic avian influenza. We also implicate genetic differences in SLC45A2 gene in the iconic plumage of the black swan. Conclusion: Together, these data suggest that the immune system of the black swan is such that should any avian viral infection become established in its native habitat, the black swan would be in a significant peril.Item Three-dimensional genome architecture persists in a 52,000-year-old woolly mammoth skin sample(Elsevier, 2024) Sandoval-Velasco, Marcela; Dudchenko, Olga; Rodríguez, Juan Antonio; Pérez Estrada, Cynthia; Dehasque, Marianne; Fontsere, Claudia; Mak, Sarah S. T.; Khan, Ruqayya; Contessoto, Vinícius G.; Oliveira Junior, Antonio B.; Kalluchi, Achyuth; Zubillaga Herrera, Bernardo J.; Jeong, Jiyun; Roy, Renata P.; Christopher, Ishawnia; Weisz, David; Omer, Arina D.; Batra, Sanjit S.; Shamim, Muhammad S.; Durand, Neva C.; O’Connell, Brendan; Roca, Alfred L.; Plikus, Maksim V.; Kusliy, Mariya A.; Romanenko, Svetlana A.; Lemskaya, Natalya A.; Serdyukova, Natalya A.; Modina, Svetlana A.; Perelman, Polina L.; Kizilova, Elena A.; Baiborodin, Sergei I.; Rubtsov, Nikolai B.; Machol, Gur; Rath, Krisha; Mahajan, Ragini; Kaur, Parwinder; Gnirke, Andreas; Garcia-Treviño, Isabel; Coke, Rob; Flanagan, Joseph P.; Pletch, Kelcie; Ruiz-Herrera, Aurora; Plotnikov, Valerii; Pavlov, Innokentiy S.; Pavlova, Naryya I.; Protopopov, Albert V.; Di Pierro, Michele; Graphodatsky, Alexander S.; Lander, Eric S.; Rowley, M. Jordan; Wolynes, Peter G.; Onuchic, José N.; Dalén, Love; Marti-Renom, Marc A.; Gilbert, M. Thomas P.; Aiden, Erez Lieberman; Center for Theoretical Biological PhysicsAnalyses of ancient DNA typically involve sequencing the surviving short oligonucleotides and aligning to genome assemblies from related, modern species. Here, we report that skin from a female woolly mammoth (†Mammuthus primigenius) that died 52,000 years ago retained its ancient genome architecture. We use PaleoHi-C to map chromatin contacts and assemble its genome, yielding 28 chromosome-length scaffolds. Chromosome territories, compartments, loops, Barr bodies, and inactive X chromosome (Xi) superdomains persist. The active and inactive genome compartments in mammoth skin more closely resemble Asian elephant skin than other elephant tissues. Our analyses uncover new biology. Differences in compartmentalization reveal genes whose transcription was potentially altered in mammoths vs. elephants. Mammoth Xi has a tetradic architecture, not bipartite like human and mouse. We hypothesize that, shortly after this mammoth’s death, the sample spontaneously freeze-dried in the Siberian cold, leading to a glass transition that preserved subfossils of ancient chromosomes at nanometer scale.