Browsing by Author "Joshi, Kedar"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Aligned colloidal clusters in an alternating rotating magnetic field elucidated by magnetic relaxation(National Academy of Sciences, 2024) Spatafora-Salazar, Aldo; Lobmeyer, Dana M.; Cunha, Lucas H. P.; Joshi, Kedar; Biswal, Sibani LisaPrecise control at the colloidal scale is one of the most promising bottom–up approaches to fabricating new materials and devices with tunable and precisely engineered properties. Magnetically driven colloidal assembly offers great versatility because of the ability to externally tune particle–particle interactions and to construct a host of particle arrangements. However, despite previous efforts to probe the parameter space, global orientational control in conjunction with two-dimensional microstructural control has remained out of reach. Furthermore, the magnetic relaxation time of superparamagnetic beads has been largely overlooked despite being a key feature of the magnetic response. Here, we take advantage of the magnetic relaxation time of superparamagnetic beads in an alternating rotating magnetic field and show how harnessing this feature facilitates the formation of oriented clusters. The orientation of these clusters can be controlled by field parameters. Using experiments, simulations, and theory, we probe a two-particle system (dimer) under this alternating rotating magnetic field and use its dynamics to provide insights into the collective response that forms clusters. We find that the type of field has significant implications for the dipolar interactions between the colloids because of the nonnegligible magnetic relaxation. Moreover, we find that the competing time scales of the magnetic relaxation and the alternating field generate an anisotropic interaction potential that drives cluster alignment. By exploiting the magnetic relaxation time of magnetic systems, we can tailor new types of interparticle interactions, thereby expanding the capabilities of colloidal assembly in engineering unique materials and devices.Item Analysis of vapor-liquid coexistence in colloidal systems(Rice University, 2/15/2022) Biswal, Sibani Lisa; Joshi, Kedar; Chemical and Biomolecular EngineeringThis data set created in 2020 describes analysis of a superparamagnetic colloidal system forced to phase separate into a liquid-vapor coexistence. The liquid clusters and bulk particles are analyzed and modeled with classical thermodynamics.Item Characterizing the spatiotemporal evolution of paramagnetic colloids in time-varying magnetic fields with Minkowski functionals(Royal Society of Chemistry, 2020) Hilou, Elaa; Joshi, Kedar; Biswal, Sibani LisaPhase separation processes are widely utilized to assemble complex fluids into novel materials. These separation processes can be thermodynamically driven due to changes in concentration, pressure, or temperature. Phase separation can also be induced with external stimuli, such as magnetic fields, resulting in novel nonequilibrium systems. However, how external stimuli influence the transition pathways between phases has not been explored in detail. Here, we describe the phase separation dynamics of superparamagnetic colloids in time-varying magnetic fields. An initially homogeneous colloidal suspension can transition from a continuous colloidal phase with voids to discrete colloidal clusters, through a bicontinuous phase formed via spinodal decomposition. The type of transition depends on the particle concentration and magnitude of the applied magnetic field. The spatiotemporal evolution of the microstructure during the nucleation and growth period is quantified by analyzing the morphology using Minkowski functionals. The characteristic length of the colloidal systems was determined to correlate with system variables such as magnetic field strength, particle concentration, and time in a power-law scaling relationship. Understanding the interplay between particle concentration and applied magnetic field allows for better control of the phases observed in these magnetically tunable colloidal systems.Item Extension of Kelvin’s equation to dipolar colloids(National Academy of Sciences, 2022) Joshi, Kedar; Biswal, Sibani LisaVapor pressure refers to the pressure exerted by the vapor phase in thermodynamic equilibrium with either its liquid or solid phase. An important class of active matter is field-driven colloids. A suspension of dipolar colloids placed in a high-frequency rotating magnetic field undergoes a nonequilibrium phase transition into a dilute and dense phase, akin to liquid–vapor coexistence in a simple fluid. Here, we compute the vapor pressure of this colloidal fluid. The number of particles that exist as the dilute bulk phase versus condensed cluster phases can be directly visualized. An exponential relationship between vapor pressure and effective temperature is determined as a function of applied field strength, analogous to the thermodynamic expression between vapor pressure and temperature found for pure liquids. Additionally, we demonstrate the applicability of Kelvin’s equation to this field-driven system. In principle, this appears to be in conflict with macroscopic thermodynamic assumptions due to the nonequilibrium and discrete nature of this colloidal system. However, the curvature of the vapor–liquid interface provides a mechanical equilibrium characterized by interfacial tension that connects the condensed clusters observed with these active fluids to classical colligative fluid properties.Item Hierarchical Assemblies of Superparamagnetic Colloids in Time-Varying Magnetic Fields(Royal Society of Chemistry, 2021) Spatafora-Salazar, Ald; Lobmeyer, Dana; da Cunha, Lucas Hildebrand Pires; Joshi, Kedar; Biswal, Sibani LisaMagnetically-guided colloidal assembly has proven to be a versatile method for building hierarchical particle assemblies. This review describes the dipolar interactions that govern superparamagnetic colloids in time-varying magnetic fields, and how such interactions have guided colloidal assembly into materials with increasing complexity that display novel dynamics. The assembly process is driven by magnetic dipole-dipole interactions, whose strength can be tuned to be attractive or repulsive. Generally, these interactions are directional in static external magnetic fields. More recently, time-varying magnetic fields have been utilized to generate dipolar interactions that vary in both time and space, allowing particle interactions to be tuned from anisotropic to isotropic. These interactions guide the dynamics of hierarchical assemblies of 1-D chains, 2-D networks, and 2-D clusters in both static and time-varying fields. Specifically, unlinked and chemically-linked colloidal chains exhibit complex dynamics, such as fragmentation, buckling, coiling, and wagging phenomena. 2-D networks exhibit controlled porosity and interesting coarsening dynamics. Finally, 2-D clusters have shown to be an ideal model system for exploring phenomena related to statistical thermodynamics. This review provides recent advances in this fast-growing field with a focus on its scientific potential.