Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Johnson, Coreen L."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Universal microbial diagnostics using random DNA probes
    (AAAS, 2016) Aghazadeh, Amirali; Lin, Adam Y.; Sheikh, Mona A.; Chen, Allen L.; Atkins, Lisa M.; Johnson, Coreen L.; Petrosino, Joseph F.; Drezek, Rebekah A.; Baraniuk, Richard G.; Bioengineering; Electrical and Computer Engineering
    Early identification of pathogens is essential for limiting development of therapy-resistant pathogens and mitigating infectious disease outbreaks. Most bacterial detection schemes use target-specific probes to differentiate pathogen species, creating time and cost inefficiencies in identifying newly discovered organisms. We present a novel universal microbial diagnostics (UMD) platform to screen for microbial organisms in an infectious sample, using a small number of random DNA probes that are agnostic to the target DNA sequences. Our platform leverages the theory of sparse signal recovery (compressive sensing) to identify the composition of a microbial sample that potentially contains novel or mutant species. We validated the UMD platform in vitro using five random probes to recover 11 pathogenic bacteria. We further demonstrated in silico that UMD can be generalized to screen for common human pathogens in different taxonomy levels. UMDメs unorthodox sensing approach opens the door to more efficient and universal molecular diagnostics.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892