Browsing by Author "Jin, Meilin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Q493K and Q498H substitutions in Spike promote adaptation of SARS-CoV-2 in mice(Elsevier, 2021) Huang, Kun; Zhang, Yufei; Hui, Xianfeng; Zhao, Ya; Gong, Wenxiao; Wang, Ting; Zhang, Shaoran; Yang, Yong; Deng, Fei; Zhang, Qiang; Chen, Xi; Yang, Ying; Sun, Xiaomei; Chen, Huanchun; Tao, Yizhi Jane; Zou, Zhong; Jin, Meilin; BiosciencesBackground: An ideal animal model to study SARS-coronavirus 2 (SARS-CoV-2) pathogenesis and evaluate therapies and vaccines should reproduce SARS-CoV-2 infection and recapitulate lung disease like those seen in humans. The angiotensin-converting enzyme 2 (ACE2) is a functional receptor for SARS-CoV-2, but mice are resistant to the infection because their ACE2 is incompatible with the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein . Methods: SARS-CoV-2 was passaged in BALB/c mice to obtain mouse-adapted virus strain. Complete genome deep sequencing of different generations of viruses was performed to characterize the dynamics of the adaptive mutations in SARS-CoV-2. Indirect immunofluorescence analysis and Biolayer interferometry experiments determined the binding affinity of mouse-adapted SARS-CoV-2 WBP-1 RBD to mouse ACE2 and human ACE2. Finally, we tested whether TLR7/8 agonist Resiquimod (R848) could also inhibit the replication of WBP-1 in the mouse model. Findings: The mouse-adapted strain WBP-1 showed increased infectivity in BALB/c mice and led to severe interstitial pneumonia. We characterized the dynamics of the adaptive mutations in SARS-CoV-2 and demonstrated that Q493K and Q498H in RBD significantly increased its binding affinity towards mouse ACE2. Additionally, the study tentatively found that the TLR7/8 agonist Resiquimod was able to protect mice against WBP-1 challenge. Therefore, this mouse-adapted strain is a useful tool to investigate COVID-19 and develop new therapies. Interpretation: We found for the first time that the Q493K and Q498H mutations in the RBD of WBP-1 enhanced its interactive affinities with mACE2. The mouse-adapted SARS-CoV-2 provides a valuable tool for the evaluation of novel antiviral and vaccine strategies. This study also tentatively verified the antiviral activity of TLR7/8 agonist Resiquimod against SARS-CoV-2 in vitro and in vivo. Funding: This research was funded by the National Key Research and Development Program of China (2020YFC0845600) and Emergency Science and Technology Project of Hubei Province (2020FCA046) and Robert A. Welch Foundation (C-1565).Item Subcellular localization and interactions of Infectious Salmon Anemia Virus (ISAV) M1 and NEP as well as host Hsc70(BioMed Central, 2017) Zhang, Wenting; Cai, Chengzhi; Lin, Li; Tao, Yizhi Jane; Jin, Meilin; BiosciencesBACKGROUND: Infectious salmon anemia virus (ISAV) is an important fish pathogen that causes high mortality in farmed Atlantic salmon. The ISAV genome consists of eight single-stranded, negative-sense RNA segments. The six largest segments contain one open reading frame (ORF) each, and encode three polymerase proteins, nucleoprotein, fusion protein, and hemagglutinin esterase protein. The two smallest segments contain more than one ORF each. The segment 7 encodes non-structural protein 1 (NS1) and nuclear export protein (NEP), while segment 8 encodes matrix protein 1 and 2 (M1 and M2). NS1 and M2 have been well known as antagonist of type I interferon. However, little is known about the characterization of M1 or NEP. In addition, heat shock cognate 70 (Hsc70) has been reported to interact with M1 and NEP of influenza viruses for the export of viral ribonucleoprotein (vRNP) via vRNP-M1-NEP complex, the goal of this study therefore was to characterize the subcellular localization and interactions of ISAV M1 and NEP as well as cellular Hsc70. RESULTS: When M1, NEP, and Hsc70 were individually expressed in the stripped snakehead (SSN-1) cells, we found that M1 protein was localized in both cytosol and nucleus of the cells, NEP was localized only in the cytosol and accumulated adjacent to the nucleus, while Hsc70 was localized throughout the cytosol, but not in the nucleus. However, when two of them were co-expressed, we found that both M1 and Hsc70 were co-localized with NEP in the cytosol and accumulated adjacent to the nucleus, while M1 and Hsc70 were still localized as they were expressed individually. Furthermore, pull-down assay was performed and showed that NEP could interact with both M1 and Hsc70, and M1-Hsc70 interaction was also observed although the interaction was weaker than that of NEP-Hsc70. CONCLUSION: Our study characterized the subcellular localization and interactions of three proteins including M1 and NEP of ISAV, and Hsc70. These data will help towards a better understanding of the life cycle of ISAV, especially the process of vRNP export.