Browsing by Author "Jiang, Xiaolong"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A CRISPR toolbox for generating intersectional genetic mouse models for functional, molecular, and anatomical circuit mapping(Springer Nature, 2022) Lusk, Savannah J.; McKinney, Andrew; Hunt, Patrick J.; Fahey, Paul G.; Patel, Jay; Chang, Andersen; Sun, Jenny J.; Martinez, Vena K.; Zhu, Ping Jun; Egbert, Jeremy R.; Allen, Genevera; Jiang, Xiaolong; Arenkiel, Benjamin R.; Tolias, Andreas S.; Costa-Mattioli, Mauro; Ray, Russell S.The functional understanding of genetic interaction networks and cellular mechanisms governing health and disease requires the dissection, and multifaceted study, of discrete cell subtypes in developing and adult animal models. Recombinase-driven expression of transgenic effector alleles represents a significant and powerful approach to delineate cell populations for functional, molecular, and anatomical studies. In addition to single recombinase systems, the expression of two recombinases in distinct, but partially overlapping, populations allows for more defined target expression. Although the application of this method is becoming increasingly popular, its experimental implementation has been broadly restricted to manipulations of a limited set of common alleles that are often commercially produced at great expense, with costs and technical challenges associated with production of intersectional mouse lines hindering customized approaches to many researchers. Here, we present a simplified CRISPR toolkit for rapid, inexpensive, and facile intersectional allele production.Item Distinct organization of two cortico-cortical feedback pathways(Springer Nature, 2022) Shen, Shan; Jiang, Xiaolong; Scala, Federico; Fu, Jiakun; Fahey, Paul; Kobak, Dmitry; Tan, Zhenghuan; Zhou, Na; Reimer, Jacob; Sinz, Fabian; Tolias, Andreas S.Neocortical feedback is critical for attention, prediction, and learning. To mechanically understand its function requires deciphering its cell-type wiring. Recent studies revealed that feedback between primary motor to primary somatosensory areas in mice is disinhibitory, targeting vasoactive intestinal peptide-expressing interneurons, in addition to pyramidal cells. It is unknown whether this circuit motif represents a general cortico-cortical feedback organizing principle. Here we show that in contrast to this wiring rule, feedback between higher-order lateromedial visual area to primary visual cortex preferentially activates somatostatin-expressing interneurons. Functionally, both feedback circuits temporally sharpen feed-forward excitation eliciting a transient increase–followed by a prolonged decrease–in pyramidal cell activity under sustained feed-forward input. However, under feed-forward transient input, the primary motor to primary somatosensory cortex feedback facilitates bursting while lateromedial area to primary visual cortex feedback increases time precision. Our findings argue for multiple cortico-cortical feedback motifs implementing different dynamic non-linear operations.