Browsing by Author "Jiang, Lei"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Probing and Manipulating Ultracold Fermi Superfluids(2012) Jiang, Lei; Pu, HanUltracold Fermi gas is an exciting field benefiting from atomic physics, optical physics and condensed matter physics. It covers many aspects of quantum mechanics. Here I introduce some of my work during my graduate study. We proposed an optical spectroscopic method based on electromagnetically-induced transparency (EIT) as a generic probing tool that provides valuable insights into the nature of Fermi paring in ultracold Fermi gases of two hyperfine states. This technique has the capability of allowing spectroscopic response to be determined in a nearly non-destructive manner and the whole spectrum may be obtained by scanning the probe laser frequency faster than the lifetime of the sample without re-preparing the atomic sample repeatedly. Both quasiparticle picture and pseudogap picture are constructed to facilitate the physical explanation of the pairing signature in the EIT spectra. Motivated by the prospect of realizing a Fermi gas of 40 K atoms with a synthetic non-Abelian gauge field, we investigated theoretically BEC-HCS crossover physics in the presence of a Rashba spin-orbit coupling in a system of two-component Fermi gas with and without a Zeeman field that breaks the population balance. A new bound state (Rashba pair) emerges because of the spin-orbit interaction. We studied the properties of Rashba pairs using a standard pair fluctuation theory. As the two-fold spin degeneracy is lifted by spin-orbit interaction, bound pairs with mixed singlet and triplet pairings (referred to as rashbons) emerge, leading to an anisotropic superfluid. We discussed in detail the experimental signatures for observing the condensation of Rashba pairs by calculating various physical observables which characterize the properties of the system and can be measured in experiment. The role of impurities as experimental probes in the detection of quantum material properties is well appreciated. Here we studied the effect of a single classical impurity in trapped ultracold Fermi superfluids. Although a non-magnetic impurity does not change macroscopic properties of s-wave Fermi superfluids, depending on its shape and strength, a magnetic impurity can induce single or multiple mid-gap bound states. The multiple mid-gap states could coincide with the development of a Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase within the superfluid. As an analog of the Scanning Tunneling Microscope, we proposed a modified radio frequency spectroscopic method to measure the focal density of states which can be employed to detect these states and other quantum phases of cold atoms. A key result of our self consistent Bogoliubov-de Gennes calculations is that a magnetic impurity can controllably induce an FFLO state at currently accessible experimental parameters.Item Spin-orbit-coupled topological Fulde-Ferrell states of fermions in a harmonic trap(American Physical Society, 2014) Jiang, Lei; Tiesinga, Eite; Liu, Xia-Ji; Hu, Hui; Pu, Han; Rice Quantum InstituteMotivated by recent experimental breakthroughs in generating spin-orbit coupling in ultracold Fermi gases using Raman laser beams, we present a systematic study of spin-orbit-coupled Fermi gases confined in a quasi-one-dimensional trap in the presence of an in-plane Zeeman field (which can be realized using a finite two-photon Raman detuning). We find that a topological Fulde-Ferrell state will emerge, featuring finite-momentum Cooper pairing and zero-energy Majorana excitations localized near the edge of the trap based on the self-consistent Bogoliubov–de Gennes (BdG) equations. We find analytically the wave functions of the Majorana modes. Finally, using the time-dependent BdG, we show how the finite-momentum pairing field manifests itself in the expansion dynamics of the atomic cloud.Item Universal Impurity-Induced Bound State in Topological Superfluids(American Physical Society, 2013) Hu, Hui; Jiang, Lei; Pu, Han; Chen, Yan; Liu, Xia-Ji; Rice Quantum InstituteWe predict a universal midgap bound state in topological superfluids, induced by either nonmagnetic or magnetic impurities in the strong scattering limit. This universal state is similar to the lowest-energy Caroli–de Gennes–Martricon bound state in a vortex core, but is bound to localized impurities. We argue that the observation of such a universal bound state can be a clear signature for identifying topological superfluids. We theoretically examine our argument for a spin-orbit coupled ultracold atomic Fermi gas trapped in a two-dimensional harmonic potential by performing extensive self-consistent calculations within the mean-field Bogoliubov–de Gennes theory. A realistic scenario for observing a universal bound state in ultracold 40K atoms is proposed.