Browsing by Author "Jester, James V."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Cell-independent matrix configuration in early corneal development(Elsevier, 2019) Young, Robert D.; Knupp, Carlo; Koudouna, Elena; Ralphs, James R.; Ma, Yanhui; Lwigale, Peter Y.; Jester, James V.; Quantock, Andrew J.Mechanisms controlling the spatial configuration of the remarkably ordered collagen-rich extracellular matrix of the transparent cornea remain incompletely understood. We previously described the assembly of the emerging corneal matrix in the mid and late stages of embryogenesis and concluded that collagen fibril organisation was driven by cell-directed mechanisms. Here, the early stages of corneal morphogenesis were examined by serial block face scanning electron microscopy of embryonic chick corneas starting at embryonic day three (E3), followed by a Fourier transform analysis of three-dimensional datasets and theoretical considerations of factors that influence matrix formation. Eyes developing normally and eyes that had the lens surgically removed at E3 were studied. Uniformly thin collagen fibrils are deposited by surface ectoderm-derived corneal epithelium in the primary stroma of the developing chick cornea and form an acellular matrix with a striking micro-lamellar orthogonal arrangement. Fourier transform analysis supported this observation and indicated that adjacent micro-lamellae display a clockwise rotation of fibril orientation, depth-wise below the epithelium. We present a model which attempts to explain how, in the absence of cells in the primary stroma, collagen organisation might be influenced by cell-independent, intrinsic mechanisms, such as fibril axial charge derived from associated proteoglycans. On a supra-lamellar scale, fine cords of non-collagenous filamentous matrix were detected over large tissue volumes. These extend into the developing cornea from the epithelial basal lamina and appear to associate with the neural crest cells that migrate inwardly to form, first the corneal endothelium and then keratocytes which synthesise the mature, secondary corneal stroma. In a small number of experimental specimens, matrix cords were present even when periocular neural crest cell migration and corneal morphogenesis had been perturbed following removal of the lens at E3.Item Recapitulation of normal collagen architecture in embryonic wounded corneas(Springer Nature, 2020) Koudouna, Elena; Spurlin, James W.; Babushkina, Anna; Quantock, Andrew J.; Jester, James V.; Lwigale, Peter Y.Wound healing is characterized by cell and extracellular matrix changes mediating cell migration, fibrosis, remodeling and regeneration. We previously demonstrated that chick fetal wound healing shows a regenerative phenotype regarding the cellular and molecular organization of the cornea. However, the chick corneal stromal structure is remarkably complex in the collagen fiber/lamellar organization, involving branching and anastomosing of collagen bundles. It is unknown whether the chick fetal wound healing is capable of recapitulating this developmentally regulated organization pattern. The purpose of this study was to examine the three-dimensional collagen architecture of wounded embryonic corneas, whilst identifying temporal and spatial changes in collagen organization during wound healing. Linear corneal wounds that traversed the epithelial layer, Bowman's layer, and anterior stroma were generated in chick corneas on embryonic day 7. Irregular thin collagen fibers are present in the wounded cornea during the early phases of wound healing. As wound healing progresses, the collagen organization dramatically changes, acquiring an orthogonal arrangement. Fourier transform analysis affirmed this observation and revealed that adjacent collagen lamellae display an angular displacement progressing from the epithelium layer towards the endothelium. These data indicate that the collagen organization of the wounded embryonic cornea recapitulate the native macrostructure.