Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Jankov, Dimitrije"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Declarative Relational Machine Learning Systems
    (2023-02-22) Jankov, Dimitrije; Jermaine, Christopher; Kyrillidis, Anastasios; Uribe, Cesar
    Several systems, most notably TensorFlow and PyTorch, have revolutionized how we practice machine learning (ML). They allow an ML practitioner to create complex models with great ease. In recent years there has been an explosion in the size of ML models, and it has become apparent that the systems we use today limit the data scientist to a few standard implementations like data parallelism (DP). In an ideal scenario, the ML practitioner would specify their model, and a system would take care of managing the specifics of the computations. My research explores how we can design and implement such systems. Specifically, it tries to find the right set of changes to a declarative relational system so that it can accommodate the needs of ML systems. The results of my research show that one can create scalable distributed machine learning systems that do not constrain the abilities of data scientists and enable greater productivity.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892