Browsing by Author "Iwanaszko, Marta"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Dynamic Cross Talk Model of the Epithelial Innate Immune Response to Double-Stranded RNA Stimulation: Coordinated Dynamics Emerging from Cell-Level Noise(Public Library of Science, 2014) Bertolusso, Roberto; Tian, Bing; Zhao, Yingxin; Vergara, Leoncio; Sabree, Aqeeb; Iwanaszko, Marta; Lipniacki, Tomasz; Brasier, Allan R.; Kimmel, MarekWe present an integrated dynamical cross-talk model of the epithelial innate immune reponse (IIR) incorporating RIG-I and TLR3 as the two major pattern recognition receptors (PRR) converging on the RelA and IRF3 transcriptional effectors. bioPN simulations reproduce biologically relevant gene-and protein abundance measurements in response to time course, gene silencing and dose-response perturbations both at the population and single cell level. Our computational predictions suggest that RelA and IRF3 are under auto- and cross-regulation. We predict, and confirm experimentally, that RIG-I mRNA expression is controlled by IRF7. We also predict the existence of a TLR3-dependent, IRF3-independent transcription factor (or factors) that control(s) expression of MAVS, IRF3 and members of the IKK family. Our model confirms the observed dsRNA dose-dependence of oscillatory patterns in single cells, with periods of 1-3 hr. Model fitting to time series, matched by knockdown data suggests that the NF-kB module operates in a different regime (with different coefficient values) than in the TNFa-stimulation experiments. In future studies, this model will serve as a foundation for identification of virus-encoded IIR antagonists and examination of stochastic effects of viral replication. Our model generates simulated time series, which reproduce the noisy oscillatory patterns of activity (with 1-3 hour period) observed in individual cells. Our work supports the hypothesis that the IIR is a phenomenon that emerged by evolution despite highly variable responses at an individual cell level.Item Microarray experiments and factors which affect their reliability(BioMed Central, 2015) Jaksik, Roman; Iwanaszko, Marta; Rzeszowska-Wolny, Joanna; Kimmel, MarekOligonucleotide microarrays belong to the basic tools of molecular biology and allow for simultaneous assessment of the expression level of thousands of genes. Analysis of microarray data is however very complex, requiring sophisticated methods to control for various factors that are inherent to the procedures used. In this article we describe the individual steps of a microarray experiment, highlighting important elements and factors that may affect the processes involved and that influence the interpretation of the results. Additionally, we describe methods that can be used to estimate the influence of these factors, and to control the way in which they affect the expression estimates. A comprehensive understanding of the experimental protocol used in a microarray experiment aids the interpretation of the obtained results. By describing known factors which affect expression estimates this article provides guidelines for appropriate quality control and pre-processing of the data, additionally applicable to other transcriptome analysis methods that utilize similar sample handling protocols.Item Mutation, drift and selection in single-driver hematologic malignancy: Example of secondary myelodysplastic syndrome following treatment of inherited neutropenia(Public Library of Science, 2019) Wojdyla, Tomasz; Mehta, Hrishikesh; Glaubach, Taly; Bertolusso, Roberto; Iwanaszko, Marta; Braun, Rosemary; Corey, Seth J.; Kimmel, Marek; Bioengineering; StatisticsCancer development is driven by series of events involving mutations, which may become fixed in a tumor via genetic drift and selection. This process usually includes a limited number of driver (advantageous) mutations and a greater number of passenger (neutral or mildly deleterious) mutations. We focus on a real-world leukemia model evolving on the background of a germline mutation. Severe congenital neutropenia (SCN) evolves to secondary myelodysplastic syndrome (sMDS) and/or secondary acute myeloid leukemia (sAML) in 30–40%. The majority of SCN cases are due to a germline ELANE mutation. Acquired mutations in CSF3R occur in >70% sMDS/sAML associated with SCN. Hypotheses underlying our model are: an ELANE mutation causes SCN; CSF3R mutations occur spontaneously at a low rate; in fetal life, hematopoietic stem and progenitor cells expands quickly, resulting in a high probability of several tens to several hundreds of cells with CSF3R truncation mutations; therapeutic granulocyte colony-stimulating factor (G-CSF) administration early in life exerts a strong selective pressure, providing mutants with a growth advantage. Applying population genetics theory, we propose a novel two-phase model of disease development from SCN to sMDS. In Phase 1, hematopoietic tissues expand and produce tens to hundreds of stem cells with the CSF3R truncation mutation. Phase 2 occurs postnatally through adult stages with bone marrow production of granulocyte precursors and positive selection of mutants due to chronic G-CSF therapy to reverse the severe neutropenia. We predict the existence of the pool of cells with the mutated truncated receptor before G-CSF treatment begins. The model does not require increase in mutation rate under G-CSF treatment and agrees with age distribution of sMDS onset and clinical sequencing data.Item NF-κB and IRF pathways: cross-regulation on target genes promoter level(BioMed Central Ltd, 2015) Iwanaszko, Marta; Kimmel, MarekBackground: The NF-κB and IRF transcription factor families are major players in inflammation and antiviral response and act as two major effectors of the innate immune response (IIR). The regulatory mechanisms of activation of these two pathways and their interactions during the IIR are only partially known. Results: Our in silico findings report that there is cross-regulation between both pathways at the level of gene transcription regulation, mediated by the presence of binding sites for both factors in promoters of genes essential for these pathways. These findings agree with recent experimental data reporting crosstalk between pathways activated by RIG-I and TLR3 receptors in response to pathogens. Conclusions: We present an extended crosstalk diagram of the IRF - NF-κB pathways. We conclude that members of the NF-κB family may directly impact regulation of IRF family, while IRF members impact regulation of NF-κB family rather indirectly, via other transcription factors such as AP-1 and SP1.