Browsing by Author "Iler, Amy M."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Lagged and dormant season climate better predict plant vital rates than climate during the growing season(Wiley, 2021) Evers, Sanne M.; Knight, Tiffany M.; Inouye, David W.; Miller, Tom E.X.; Salguero‐Gómez, Roberto; Iler, Amy M.; Compagnoni, Aldo; Program in Ecology and Evolutionary BiologyUnderstanding the effects of climate on the vital rates (e.g., survival, development, reproduction) and dynamics of natural populations is a long-standing quest in ecology, with ever-increasing relevance in the face of climate change. However, linking climate drivers to demographic processes requires identifying the appropriate time windows during which climate influences vital rates. Researchers often do not have access to the long-term data required to test a large number of windows, and are thus forced to make a priori choices. In this study, we first synthesize the literature to assess current a priori choices employed in studies performed on 104 plant species that link climate drivers with demographic responses. Second, we use a sliding-window approach to investigate which combination of climate drivers and temporal window have the best predictive ability for vital rates of four perennial plant species that each have over a decade of demographic data (Helianthella quinquenervis, Frasera speciosa, Cylindriopuntia imbricata, and Cryptantha flava). Our literature review shows that most studies consider time windows in only the year preceding the measurement of the vital rate(s) of interest, and focus on annual or growing season temporal scales. In contrast, our sliding-window analysis shows that in only four out of 13 vital rates the selected climate drivers have time windows that align with, or are similar to, the growing season. For many vital rates, the best window lagged more than 1 year and up to 4 years before the measurement of the vital rate. Our results demonstrate that for the vital rates of these four species, climate drivers that are lagged or outside of the growing season are the norm. Our study suggests that considering climatic predictors that fall outside of the most recent growing season will improve our understanding of how climate affects population dynamics.Item The effect of demographic correlations on the stochastic population dynamics of perennial plants(Ecological Society of America, 2016) Compagnoni, Aldo; Bibian, Andrew J.; Ochocki, Brad M.; Rogers, Haldre S.; Schultz, Emily L.; Sneck, Michelle E.; Elderd, Bret D.; Iler, Amy M.; Inouye, David W.; Jacquemyn, Hans; Miller, Tom E.X.Understanding the influence of environmental variability on population dynamics is a fundamental goal of ecology. Theory suggests that, for populations in variable environments, temporal correlations between demographic vital rates (e.g., growth, survival, reproduction) can increase (if positive) or decrease (if negative) the variability of year-to-year population growth. Because this variability generally decreases long-term population viability, vital rate correlations may importantly affect population dynamics in stochastic environments. Despite long-standing theoretical interest, it is unclear whether vital rate correlations are common in nature, whether their directions are predominantly negative or positive, and whether they are of sufficient magnitude to warrant broad consideration in studies of stochastic population dynamics. We used long-term demographic data for three perennial plant species, hierarchical Bayesian parameterization of population projection models, and stochastic simulations to address the following questions: (1) What are the sign, magnitude, and uncertainty of temporal correlations between vital rates? (2) How do specific pairwise correlations affect the year-to-year variability of population growth? (3) Does the net effect of all vital rate correlations increase or decrease year-to-year variability? (4) What is the net effect of vital rate correlations on the long-term stochastic population growth rate (λs)? We found only four moderate to strong correlations, both positive and negative in sign, across all species and vital rate pairs; otherwise, correlations were generally weak in magnitude and variable in sign. The net effect of vital rate correlations ranged from a slight decrease to an increase in the year-to-year variability of population growth, with average changes in variance ranging from −1% to +22%. However, vital rate correlations caused virtually no change in the estimates of λs (mean effects ranging from −0.01% to +0.17%). Therefore, the proportional changes in the variance of population growth caused by demographic correlations were too small on an absolute scale to importantly affect population growth and viability. We conclude that, in our three focal populations and perhaps more generally, vital rate correlations have little effect on stochastic population dynamics. This may be good news for population ecologists, because estimating vital rate correlations and incorporating them into population models can be data intensive and technically challenging.