Browsing by Author "Ikeuchi, Kazuhiko"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Nematic Fluctuations in the Non-Superconducting Iron Pnictide BaFe1.9−xNi0.1CrxAs2(Frontiers Media S.A., 2022) Gong, Dongliang; Yi, Ming; Wang, Meng; Xie, Tao; Zhang, Wenliang; Danilkin, Sergey; Deng, Guochu; Liu, Xinzhi; Park, Jitae T.; Ikeuchi, Kazuhiko; Kamazawa, Kazuya; Mo, Sung-Kwan; Hashimoto, Makoto; Lu, Donghui; Zhang, Rui; Dai, Pengcheng; Birgeneau, Robert J.; Li, Shiliang; Luo, Huiqian; Rice Center for Quantum MaterialsThe main driven force of the electronic nematic phase in iron-based superconductors is still under debate. Here, we report a comprehensive study on the nematic fluctuations in a non-superconducting iron pnictide system BaFe1.9−xNi0.1CrxAs2 by electronic transport, angle-resolved photoemission spectroscopy (ARPES), and inelastic neutron scattering (INS) measurements. Previous neutron diffraction and transport measurements suggested that the collinear antiferromagnetism persists to x = 0.8, with similar Néel temperature TN and structural transition temperature Ts around 32 K, but the charge carriers change from electron type to hole type around x = 0.5. In this study, we have found that the in-plane resistivity anisotropy also highly depends on the Cr dopings and the type of charge carriers. While ARPES measurements suggest possibly weak orbital anisotropy onset near Ts for both x = 0.05 and x = 0.5 compounds, INS experiments reveal clearly different onset temperatures of low-energy spin excitation anisotropy, which is likely related to the energy scale of spin nematicity. These results suggest that the interplay between the local spins on Fe atoms and the itinerant electrons on Fermi surfaces is crucial to the nematic fluctuations of iron pnictides, where the orbital degree of freedom may behave differently from the spin degree of freedom, and the transport properties are intimately related to the spin dynamics.Item Spin excitations in optimally P-dopedᅠBaFe2(As0.7P0.3)2 superconductor(American Physical Society, 2016) Hu, Ding; Yin, Zhiping; Zhang, Wenliang; Ewings, R.A.; Ikeuchi, Kazuhiko; Nakamura, Mitsutaka; Roessli, Bertrand; Wei, Yuan; Zhao, Lingxiao; Chen, Genfu; Li, Shiliang; Luo, Huiqian; Haule, Kristjan; Kotliar, Gabriel; Dai, PengchengWe use inelastic neutron scattering to study the temperature and energy dependence of spin excitations in an optimally P-doped BaFe2(As0.7P0.3)2 superconductor (Tc=30 K) throughout the Brillouin zone. In the undoped state, spin waves and paramagnetic spin excitations of BaFe2As2stem from an antiferromagnetic (AF) ordering wave vector QAF=(±1,0), and peak near the zone boundary at (±1,±1) around 180 meV. Replacing 30% As by smaller P to induce superconductivity, low-energy spin excitations of BaFe2(As0.7P0.3)2 form a resonance in the superconducting state and high-energy spin excitations now peak around 220 meV near (±1,±1). These results are consistent with calculations from a combined density functional theory and dynamical mean field theory, and suggest that the decreased average pnictogen height in BaFe2(As0.7P0.3)2 reduces the strength of electron correlations and increases the effective bandwidth of magnetic excitations.