Browsing by Author "Hughes, Sheryl O."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item An Objective System for Quantitative Assessment of Television Viewing Among Children (Family Level Assessment of Screen Use in the Home-Television): System Development Study(JMIR, 2022) Vadathya, Anil Kumar; Musaad, Salma; Beltran, Alicia; Perez, Oriana; Meister, Leo; Baranowski, Tom; Hughes, Sheryl O.; Mendoza, Jason A.; Sabharwal, Ashutosh; Veeraraghavan, Ashok; O'Connor, TeresiaBackground: Television viewing among children is associated with developmental and health outcomes, yet measurement techniques for television viewing are prone to errors, biases, or both. Objective: This study aims to develop a system to objectively and passively measure children’s television viewing time. Methods: The Family Level Assessment of Screen Use in the Home-Television (FLASH-TV) system includes three sequential algorithms applied to video data collected in front of a television screen: face detection, face verification, and gaze estimation. A total of 21 families of diverse race and ethnicity were enrolled in 1 of 4 design studies to train the algorithms and provide proof of concept testing for the integrated FLASH-TV system. Video data were collected from each family in a laboratory mimicking a living room or in the child’s home. Staff coded the video data for the target child as the gold standard. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value were calculated for each algorithm, as compared with the gold standard. Prevalence and biased adjusted κ scores and an intraclass correlation using a generalized linear mixed model compared FLASH-TV’s estimation of television viewing duration to the gold standard. Results: FLASH-TV demonstrated high sensitivity for detecting faces (95.5%-97.9%) and performed well on face verification when the child’s gaze was on the television. Each of the metrics for estimating the child’s gaze on the screen was moderate to good (range: 55.1% negative predictive value to 91.2% specificity). When combining the 3 sequential steps, FLASH-TV estimation of the child’s screen viewing was overall good, with an intraclass correlation for an overall time watching television of 0.725 across conditions. Conclusions: FLASH-TV offers a critical step forward in improving the assessment of children’s television viewing.Item Obesity status trajectory groups among elementary school children(BioMed Central, 2016) Chen, Tzu-An; Baranowski, Tom; Moreno, Jennette P.; O’Connor, Teresia M.; Hughes, Sheryl O.; Baranowski, Janice; Woehler, Deborah; Kimbro, Rachel T.; Johnston, Craig A.Background: Little is known about patterns in the transition from healthy weight to overweight or obesity during the elementary school years. This study examined whether there were distinct body mass index (BMI) trajectory groups among elementary school children, and predictors of trajectory group membership. Methods: This is a secondary analysis of 1651 elementary school children with complete biannual longitudinal data from kindergarten to the beginning of 5th grade. Heights and weights were measured by trained school nurses using standard procedures at the beginning and end of each school year for 11 consecutive assessments. Group-based trajectory clustering and multinomial logit modeling were conducted. Results: When using BMIz score, six trajectory groups were identified revealing substantial consistency in BMIz score across time. When using a categorical variable separating overweight/obese children (BMI ≥ 85%ile) from the rest, five developmental trajectories (persistently non-overweight/obese weight: 51.1 %; early-onset overweight/obese: 9.2 %; late-onset overweight/obese: 9.7 %; becoming healthy weight: 8.2 %; and chronically overweight/obese: 21.8 %) were identified. When using a categorical variable separating obese children (BMI ≥ 95%ile) from the rest, three trajectories (persistently non-obese: 74.1 %, becoming obese: 12.8 %; and chronically obese: 13.2 %) were identified. For both cutoffs (≥ BMI percentile 85 % or 95 %), girls were more likely than boys to be classified in the persistently non-overweight and/or obese group (odds ratios (OR) ranged from 0.53 to 0.67); and Hispanic children and non-Hispanic Black children were more likely to be chronically overweight and/or obese than non-Hispanic White children (OR ranged from 1.57 to 2.44). Hispanic children were also more likely to become obese (OR: 1.84) than non-Hispanic White children when ≥ BMI percentile 95 % was used. Conclusions: Boys, Hispanic and non-Hispanic Black children were at higher risk of being overweight or obese throughout their elementary school years, supporting the need for obesity treatment. Post kindergarten and post second grade summer months were times when some children transitioned into overweight/obesity. It will be important to identify which behavioral factors (e.g., diet, physical activity, sedentary behaviors, and/or sleep) predisposed children to becoming overweight/obese, and whether these factors differ by time (Kindergarten versus second grade). If behavioral predisposing factors could be identified early, targeted obesity prevention should be offered.Item Obesity status trajectory groups among elementary school children(BioMed Central, 2016) Chen, Tzu-An; Baranowski, Tom; Moreno, Jennette P.; O'Connor, Teresia M.; Hughes, Sheryl O.; Baranowski, Janice; Woehler, Deborah; Kimbro, Rachel T.; Johnston, Craig A.Background: Little is known about patterns in the transition from healthy weight to overweight or obesity during the elementary school years. This study examined whether there were distinct body mass index (BMI) trajectory groups among elementary school children, and predictors of trajectory group membership. Methods: This is a secondary analysis of 1651 elementary school children with complete biannual longitudinal data from kindergarten to the beginning of 5th grade. Heights and weights were measured by trained school nurses using standard procedures at the beginning and end of each school year for 11 consecutive assessments. Group-based trajectory clustering and multinomial logit modeling were conducted. Results: When using BMIz score, six trajectory groups were identified revealing substantial consistency in BMIz score across time. When using a categorical variable separating overweight/obese children (BMI ≥ 85%ile) from the rest, five developmental trajectories (persistently non-overweight/obese weight: 51.1 %; early-onset overweight/obese: 9.2 %; late-onset overweight/obese: 9.7 %; becoming healthy weight: 8.2 %; and chronically overweight/obese: 21.8 %) were identified. When using a categorical variable separating obese children (BMI ≥ 95%ile) from the rest, three trajectories (persistently non-obese: 74.1 %, becoming obese: 12.8 %; and chronically obese: 13.2 %) were identified. For both cutoffs (≥ BMI percentile 85 % or 95 %), girls were more likely than boys to be classified in the persistently non-overweight and/or obese group (odds ratios (OR) ranged from 0.53 to 0.67); and Hispanic children and non-Hispanic Black children were more likely to be chronically overweight and/or obese than non-Hispanic White children (OR ranged from 1.57 to 2.44). Hispanic children were also more likely to become obese (OR: 1.84) than non-Hispanic White children when ≥ BMI percentile 95 % was used. Conclusions: Boys, Hispanic and non-Hispanic Black children were at higher risk of being overweight or obese throughout their elementary school years, supporting the need for obesity treatment. Post kindergarten and post second grade summer months were times when some children transitioned into overweight/obesity. It will be important to identify which behavioral factors (e.g., diet, physical activity, sedentary behaviors, and/or sleep) predisposed children to becoming overweight/obese, and whether these factors differ by time (Kindergarten versus second grade). If behavioral predisposing factors could be identified early, targeted obesity prevention should be offered.Item The Family Level Assessment of Screen Use–Mobile Approach: Development of an Approach to Measure Children’s Mobile Device Use(JMIR, 2022) Perez, Oriana; Vadathya, Anil Kumar; Beltran, Alicia; Barnett, R. Matthew; Hindera, Olivia; Garza, Tatyana; Musaad, Salma M.; Baranowski, Tom; Hughes, Sheryl O.; Mendoza, Jason A.; Sabharwal, Ashutosh; Veeraraghavan, Ashok; O'Connor, Teresia M.Background: There is a strong association between increased mobile device use and worse dietary habits, worse sleep outcomes, and poor academic performance in children. Self-report or parent-proxy report of children’s screen time has been the most common method of measuring screen time, which may be imprecise or biased. Objective: The objective of this study was to assess the feasibility of measuring the screen time of children on mobile devices using the Family Level Assessment of Screen Use (FLASH)–mobile approach, an innovative method that leverages the existing features of the Android platform. Methods: This pilot study consisted of 2 laboratory-based observational feasibility studies and 2 home-based feasibility studies in the United States. A total of 48 parent-child dyads consisting of a parent and child aged 6 to 11 years participated in the pilot study. The children had to have their own or shared Android device. The laboratory-based studies included a standardized series of tasks while using the mobile device or watching television, which were video recorded. Video recordings were coded by staff for a gold standard comparison. The home-based studies instructed the parent-child dyads to use their mobile device as they typically use it over 3 days. Parents received a copy of the use logs at the end of the study and completed an exit interview in which they were asked to review their logs and share their perceptions and suggestions for the improvement of the FLASH-mobile approach. Results: The final version of the FLASH-mobile approach resulted in user identification compliance rates of >90% for smartphones and >80% for tablets. For laboratory-based studies, a mean agreement of 73.6% (SD 16.15%) was achieved compared with the gold standard (human coding of video recordings) in capturing the target child’s mobile use. Qualitative feedback from parents and children revealed that parents found the FLASH-mobile approach useful for tracking how much time their child spends using the mobile device as well as tracking the apps they used. Some parents revealed concerns over privacy and provided suggestions for improving the FLASH-mobile approach. Conclusions: The FLASH-mobile approach offers an important new research approach to measure children’s use of mobile devices more accurately across several days, even when the child shares the device with other family members. With additional enhancement and validation studies, this approach can significantly advance the measurement of mobile device use among young children.