Browsing by Author "Huang, Bincheng"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Accurate measurement of nanomechanical motion in a fiber-taper nano-optomechanical system(AIP Publishing LLC, 2019) Zheng, Huadan; Qiu, Weiqia; Gu, Xiaohang; Zhang, Yu; Zhu, Wenguo; Huang, Bincheng; Lu, Huihui; Guan, Heyuan; Xiao, Yi; Zhong, Yongchun; Fang, Junbin; Luo, Yunhan; Zhang, Jun; Yu, Jianhui; Tittel, Frank; Chen, ZheThe hybrid systems that couple optical and mechanical degrees of freedom in nanoscale devices offer an unprecedented opportunity and development in laboratories worldwide. A nano-optomechanical (NOM) system that converts energy directly/inversely between optics and mechanics opens an approach to control the behavior of light and light-driven mechanics. An accurate measurement of the mechanical motion of a fiber-taper NOM system is a critical challenge. In this work, an optical microscope was used to measure the nanoscale mechanical motion of the fiber taper by introducing white light interference. The resolution of mechanical motion monitoring achieved 0.356 nm with an optomechanical efficiency of >20 nm/μW. This paper describes an approach to characterize NOM transducers between optical and mechanical signals in both classical and quantum fields.Item Influence of Tuning Fork Resonance Properties on Quartz-Enhanced Photoacoustic Spectroscopy Performance(MDPI, 2019) Zheng, Huadan; Lin, Haoyang; Dong, Lei; Liu, Yihua; Patimisco, Pietro; Zweck, John; Mozumder, Ali; Sampaolo, Angelo; Spagnolo, Vincenzo; Huang, Bincheng; Tang, Jieyuan; Dong, Linpeng; Zhu, Wenguo; Yu, Jianhui; Chen, Zhe; Tittel, Frank K.A detailed investigation of the influence of quartz tuning forks (QTFs) resonance properties on the performance of quartz-enhanced photoacoustic spectroscopy (QEPAS) exploiting QTFs as acousto-electric transducers is reported. The performance of two commercial QTFs with the same resonance frequency (32.7 KHz) but different geometries and two custom QTFs with lower resonance frequencies (2.9 KHz and 7.2 KHz) were compared and discussed. The results demonstrated that the fundamental resonance frequency as well as the quality factor and the electrical resistance were strongly inter-dependent on the QTF prongs geometry. Even if the resonance frequency was reduced, the quality factor must be kept as high as possible and the electrical resistance as low as possible in order to guarantee high QEPAS performance.