Browsing by Author "Hong, Liang"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item A mechanism of defect-enhanced phase transformation kinetics in lithium iron phosphate olivine(Springer Nature, 2019) Hong, Liang; Yang, Kaiqi; Tang, MingAntisite defects are a type of point defect ubiquitously present in intercalation compounds for energy storage applications. While they are often considered a deleterious feature, here we elucidate a mechanism of antisite defects enhancing lithium intercalation kinetics in LiFePO4 by accelerating the FePO4 → LiFePO4 phase transformation. Although FeLi antisites block Li movement along the [010] migration channels in LiFePO4, phase-field modeling reveals that their ability to enhance Li diffusion in other directions significantly increases the active surface area for Li intercalation in the surface-reaction-limited kinetic regime, which results in order-of-magnitude improvement in the phase transformation rate compared to defect-free particles. Antisite defects also promote a more uniform reaction flux on (010) surface and prevent the formation of current hotspots under galvanostatic (dis)charging conditions. We analyze the scaling relation between the phase boundary speed, Li diffusivity and particle dimensions and derive the criteria for the co-optimization of defect content and particle geometry. A surprising prediction is that (100)-oriented LiFePO4 plates could potentially deliver better performance than (010)-oriented plates when the Li intercalation process is surface-reaction-limited. Our work suggests tailoring antisite defects as a general strategy to improve the rate performance of phase-changing battery compounds with strong diffusion anisotropy.Item Two-dimensional lithium diffusion behavior and probable hybrid phase transformation kinetics in olivine lithium iron phosphate(Springer Nature, 2017) Hong, Liang; Li, Linsen; Chen-Wiegart, Yuchen-Karen; Wang, Jiajun; Xiang, Kai; Gan, Liyang; Li, Wenjie; Meng, Fei; Wang, Fan; Wang, Jun; Chiang, Yet-Ming; Jin, Song; Tang, MingOlivine lithium iron phosphate is a technologically important electrode material for lithium-ion batteries and a model system for studying electrochemically driven phase transformations. Despite extensive studies, many aspects of the phase transformation and lithium transport in this material are still not well understood. Here we combine operando hard X-ray spectroscopic imaging and phase-field modeling to elucidate the delithiation dynamics of single-crystal lithium iron phosphate microrods with long-axis along the [010] direction. Lithium diffusivity is found to be two-dimensional in microsized particles containing ~3% lithium-iron anti-site defects. Our study provides direct evidence for the previously predicted surface reaction-limited phase-boundary migration mechanism and the potential operation of a hybrid mode of phase growth, in which phase-boundary movement is controlled by surface reaction or lithium diffusion in different crystallographic directions. These findings uncover the rich phase-transformation behaviors in lithium iron phosphate and intercalation compounds in general and can help guide the design of better electrodes.