Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hong, Kiheon"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Impregnation of KOAc on PdAu/SiO2 causes Pd-acetate formation and metal restructuring
    (Royal Society of Chemistry, 2023) Jacobs, Hunter P.; Elias, Welman C.; Heck, Kimberly N.; Dean, David P.; Dodson, Justin J.; Zhang, Wenqing; Arredondo, Jacob H.; Breckner, Christian J.; Hong, Kiheon; Botello, Christopher R.; Chen, Laiyuan; Mueller, Sean G.; Alexander, Steven R.; Miller, Jeffrey T.; Wong, Michael S.; Chemical and Biomolecular Engineering; Chemistry; Civil and Environmental Engineering; Materials Science and Nanoengineering
    Potassium-promoted, oxide-supported PdAu is catalytically active for the gas-phase acetoxylation of ethylene to form vinyl acetate monomer (VAM), in which the potassium improves long-term activity and VAM selectivity. The alkali metal is incorporated into the catalyst via wet impregnation of its salt solution, and it is generally assumed that this common catalyst preparation step has no effect on the catalyst structure. However, in this work, we report evidence to the contrary. We synthesized a silica-supported PdAu (PdAu/SiO2, 8 wt% Pd, 4 wt% Au) model catalyst containing Pd-rich PdAu alloy and pure Au phases. Impregnation with potassium acetate (KOAc) aqueous solution and subsequent drying did not cause XRD-detectible changes to the bimetal structure. However, DRIFTS indicated the presence of Pd3(OAc)6 species, which is correlated to up to 2% Pd loss after washing of the dried KOAc-promoted PdAu/SiO2. Carrying out the impregnation step with an AcOH-only solution and subsequent drying caused significant enlargement of the pure Au grain size and generated a smaller amount of Pd3(OAc)6. During co-impregnation of AcOH and KOAc, grain sizes were enlarged slightly, and substantial amounts of K2Pd2(OAc)6 and Pd3(OAc)6 were detected by DRIFTS and correlated to up to 32% Pd loss after washing. Synchrotron XAS analysis showed that approximately half the Pd atoms were oxidized, corroborating the presence of the Pd-acetate species. These results indicate wet-impregnation-induced metal leaching can occur and be substantial during catalyst preparation.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892