Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hicks, Stephanie C."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Evolutionary Action Score of TP53 Coding Variants Is Predictive of Platinum Response in Head and Neck Cancer Patients
    (AACR, 2015) Osman, Abdullah A.; Neskey, David M.; Katsonis, Panagiotis; Patel, Ameeta A.; Ward, Alexandra M.; Hsu, Teng-Kuei; Hicks, Stephanie C.; McDonald, Thomas O.; Ow, Thomas J.; Alves, Marcus Ortega; Pickering, Curtis R.; Skinner, Heath D.; Zhao, Mei; Sturgis, Eric M.; Kies, Merrill S.; El-Naggar, Adel; Perrone, Federica; Licitra, Lisa; Bossi, Paolo; Kimmel, Marek; Frederick, Mitchell J.; Lichtarge, Olivier; Myers, Jeffrey N.
    TP53 is the most frequently altered gene in head and neck squamous cell carcinoma (HNSCC), with mutations occurring in over two thirds of cases; however, the predictive response of these mutations to cisplatin-based therapy remains elusive. In the current study, we evaluate the ability of the Evolutionary Action score of TP53-coding variants (EAp53) to predict the impact of TP53 mutations on response to chemotherapy. The EAp53 approach clearly identifies a subset of high-risk TP53 mutations associated with decreased sensitivity to cisplatin both in vitro and in vivo in preclinical models of HNSCC. Furthermore, EAp53 can predict response to treatment and, more importantly, a survival benefit for a subset of head and neck cancer patients treated with platinum-based therapy. Prospective evaluation of this novel scoring system should enable more precise treatment selection for patients with HNSCC.
  • Loading...
    Thumbnail Image
    Item
    Evolutionary Action Score of TP53 Identifies High-Risk Mutations Associated with Decreased Survival and Increased Distant Metastases in Head and Neck Cancer
    (AACR, 2015) Neskey, David M.; Osman, Abdullah A.; Ow, Thomas J.; Katsonis, Panagiotis; McDonald, Thomas; Hicks, Stephanie C.; Hsu, Teng-Kuei; Pickering, Curtis R.; Ward, Alexandra; Patel, Ameeta; Yordy, John S.; Skinner, Heath D.; Giri, Uma; Sano, Daisuke; Story, Michael D.; Beadle, Beth M.; El-Naggar, Adel K.; Kies, Merrill S.; William, William N.; Caulin, Carlos; Frederick, Mitchell; Kimmel, Marek; Myers, Jeffrey N.; Lichtarge, Olivier
    TP53 is the most frequently altered gene in head and neck squamous cell carcinoma, with mutations occurring in over two-thirds of cases, but the prognostic significance of these mutations remains elusive. In the current study, we evaluated a novel computational approach termed evolutionary action (EAp53) to stratify patients with tumors harboring TP53 mutations as high or low risk, and validated this system in both in vivo and in vitro models. Patients with high-risk TP53 mutations had the poorest survival outcomes and the shortest time to the development of distant metastases. Tumor cells expressing high-risk TP53 mutations were more invasive and tumorigenic and they exhibited a higher incidence of lung metastases. We also documented an association between the presence of high-risk mutations and decreased expression of TP53 target genes, highlighting key cellular pathways that are likely to be dysregulated by this subset of p53 mutations that confer particularly aggressive tumor behavior. Overall, our work validated EAp53 as a novel computational tool that may be useful in clinical prognosis of tumors harboring p53 mutations.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892