Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Hayashida, Kenji"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Magnetically tuned continuous transition from weak to strong coupling in terahertz magnon polaritons
    (American Physical Society, 2023) Baydin, Andrey; Hayashida, Kenji; Makihara, Takuma; Tay, Fuyang; Ma, Xiaoxuan; Ren, Wei; Ma, Guohong; Noe, G. Timothy; Katayama, Ikufumi; Takeda, Jun; Nojiri, Hiroyuki; Cao, Shixun; Bamba, Motoaki; Kono, Junichiro; Smalley-Curl Institute
    Depending on the relative rates of coupling and dissipation, a light-matter coupled system is either in the weak- or strong-coupling regime. Here, we present a unique system where the coupling rate continuously increases with an externally applied magnetic field while the dissipation rate remains constant, allowing us to monitor a weak-to-strong coupling transition as a function of magnetic field. We observed a Rabi splitting of a terahertz magnon mode in yttrium orthoferrite above a threshold magnetic field of ∼14 T. Based on a microscopic theoretical model, we show that with increasing magnetic field the magnons transition into magnon polaritons through an exceptional point, which will open up new opportunities for in situ control of non-Hermitian systems.
  • Loading...
    Thumbnail Image
    Item
    Perfect intrinsic squeezing at the superradiant phase transition critical point
    (Springer Nature, 2023) Hayashida, Kenji; Makihara, Takuma; Marquez Peraca, Nicolas; Fallas Padilla, Diego; Pu, Han; Kono, Junichiro; Bamba, Motoaki
    Some of the most exotic properties of the quantum vacuum are predicted in ultrastrongly coupled photon–atom systems; one such property is quantum squeezing leading to suppressed quantum fluctuations of photons and atoms. This squeezing is unique because (1) it is realized in the ground state of the system and does not require external driving, and (2) the squeezing can be perfect in the sense that quantum fluctuations of certain observables are completely suppressed. Specifically, we investigate the ground state of the Dicke model, which describes atoms collectively coupled to a single photonic mode, and we found that the photon–atom fluctuation vanishes at the onset of the superradiant phase transition in the thermodynamic limit of an infinite number of atoms. Moreover, when a finite number of atoms is considered, the variance of the fluctuation around the critical point asymptotically converges to zero, as the number of atoms is increased. In contrast to the squeezed states of flying photons obtained using standard generation protocols with external driving, the squeezing obtained in the ground state of the ultrastrongly coupled photon–atom systems is resilient against unpredictable noise.
  • Loading...
    Thumbnail Image
    Item
    Quantum simulation of an extended Dicke model with a magnetic solid
    (Springer Nature, 2024) Marquez Peraca, Nicolas; Li, Xinwei; Moya, Jaime M.; Hayashida, Kenji; Kim, Dasom; Ma, Xiaoxuan; Neubauer, Kelly J.; Fallas Padilla, Diego; Huang, Chien-Lung; Dai, Pengcheng; Nevidomskyy, Andriy H.; Pu, Han; Morosan, Emilia; Cao, Shixun; Bamba, Motoaki; Kono, Junichiro
    The Dicke model describes the cooperative interaction of an ensemble of two-level atoms with a single-mode photonic field and exhibits a quantum phase transition as a function of light–matter coupling strength. Extending this model by incorporating short-range atom–atom interactions makes the problem intractable but is expected to produce new physical phenomena and phases. Here, we simulate such an extended Dicke model using a crystal of ErFeO3, where the role of atoms (photons) is played by Er3+ spins (Fe3+ magnons). Through terahertz spectroscopy and magnetocaloric effect measurements as a function of temperature and magnetic field, we demonstrated the existence of a novel atomically ordered phase in addition to the superradiant and normal phases that are expected from the standard Dicke model. Further, we elucidated the nature of the phase boundaries in the temperature–magnetic-field phase diagram, identifying both first-order and second-order phase transitions. These results lay the foundation for studying multiatomic quantum optics models using well-characterized many-body solid-state systems.
  • Loading...
    Thumbnail Image
    Item
    Ultrastrong magnon–magnon coupling dominated by antiresonant interactions
    (Springer Nature, 2021) Makihara, Takuma; Hayashida, Kenji; Noe Ii, G. Timothy; Li, Xinwei; Marquez Peraca, Nicolas; Ma, Xiaoxuan; Jin, Zuanming; Ren, Wei; Ma, Guohong; Katayama, Ikufumi; Takeda, Jun; Nojiri, Hiroyuki; Turchinovich, Dmitry; Cao, Shixun; Bamba, Motoaki; Kono, Junichiro
    Exotic quantum vacuum phenomena are predicted in cavity quantum electrodynamics systems with ultrastrong light-matter interactions. Their ground states are predicted to be vacuum squeezed states with suppressed quantum fluctuations owing to antiresonant terms in the Hamiltonian. However, such predictions have not been realized because antiresonant interactions are typically negligible compared to resonant interactions in light-matter systems. Here we report an unusual, ultrastrongly coupled matter-matter system of magnons that is analytically described by a unique Hamiltonian in which the relative importance of resonant and antiresonant interactions can be easily tuned and the latter can be made vastly dominant. We found a regime where vacuum Bloch-Siegert shifts, the hallmark of antiresonant interactions, greatly exceed analogous frequency shifts from resonant interactions. Further, we theoretically explored the system’s ground state and calculated up to 5.9 dB of quantum fluctuation suppression. These observations demonstrate that magnonic systems provide an ideal platform for exploring exotic quantum vacuum phenomena predicted in ultrastrongly coupled light-matter systems.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892