Browsing by Author "Hauge, R.H."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Collective antenna effects in the terahertz and infrared response of highly aligned carbon nanotube arrays(The American Physical Society, 2013) Ren, L.; Zhang, Q.; Pint, C.L.; Wójcik, A.K.; Bunney, M. Jr; Arikawa, T.; Kawayama, I.; Tonouchi, M.; Hauge, R.H.; Belyanin, A.A.; Kono, J.We study macroscopically aligned single-wall carbon nanotube arrays with uniform lengths via polarization-dependent terahertz and infrared transmission spectroscopy. Polarization anisotropy is extreme at frequencies less than ∼100 cm−1 with no sign of attenuation when the polarization is perpendicular to the alignment direction. The attenuation for both parallel and perpendicular polarizations increases with increasing frequency, exhibiting a pronounced and broad peak around 450 cm−1 in the parallel case. We model the electromagnetic response of the sample by taking into account both radiative scattering and absorption losses. We show that our sample acts as an effective antenna due to the high degree of alignment, exhibiting much larger radiative scattering than absorption in the mid/far-infrared range. Our calculated attenuation spectrum clearly shows a non-Drude peak at ∼450 cm−1 in agreement with the experiment.Item Midinfrared third-harmonic generation from macroscopically aligned ultralong single-wall carbon nanotubes(American Physical Society, 2013) Morris, D.T.; Pint, C.L.; Arvidson, R.S.; Luttge, A.; Hauge, R.H.; Belyanin, A.A.; Woods, G.L.; Kono, J.We report the observation of strong third-harmonic generation from a macroscopic array of aligned ultralong single-wall carbon nanotubes (SWCNTs)with intensemidinfrared radiation. Through power-dependent experiments, we determined the absolute value of the third-order nonlinear optical susceptibility !(3) of our SWCNT film to be 5.53 × 10−12 esu, three orders of magnitude larger than that of the fused silica reference we used. Taking account of the filling factor of 8.75% for our SWCNT film, we estimate a !(3) of 6.32 × 10−11 esu for a fully dense film. Furthermore, through polarization-dependent experiments, we extracted all the nonzero elements of the !(3) tensor, determining the magnitude of the weaker tensor elements to be #1/6 of that of the dominant !(3) zzzz component.