Browsing by Author "Harutyunyan, Avetik R."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Graphene as an atomically thin interface for growth of vertically aligned carbon nanotubes(Macmillan Publishers Limited, 2013) Rao, Rahul; Chen, Gugang; Arava, Leela Mohana Reddy; Kalaga, Kaushik; Ishigami, Masahiro; Heinz, Tony F.; Ajayan, Pulickel M.; Harutyunyan, Avetik R.Growth of vertically aligned carbon nanotube (CNT) forests is highly sensitive to the nature of the substrate. This constraint narrows the range of available materials to just a few oxide-based dielectrics and presents a major obstacle for applications. Using a suspended monolayer, we show here that graphene is an excellent conductive substrate for CNT forest growth. Furthermore, graphene is shown to intermediate growth on key substrates, such as Cu, Pt, and diamond, which had not previously been compatible with nanotube forest growth. We find that growth depends on the degree of crystallinity of graphene and is best on mono- or few-layer graphene. The synergistic effects of graphene are revealed by its endurance after CNT growth and low contact resistances between the nanotubes and Cu. Our results establish graphene as a unique interface that extends the class of substrate materials for CNT growth and opens up important new prospects for applications.Item Nickel particle–enabled width-controlled growth of bilayer molybdenum disulfide nanoribbons(AAAS, 2021) Li, Xufan; Li, Baichang; Lei, Jincheng; Bets, Ksenia V.; Sang, Xiahan; Okogbue, Emmanuel; Liu, Yang; Unocic, Raymond R.; Yakobson, Boris I.; Hone, James; Harutyunyan, Avetik R.Transition metal dichalcogenides exhibit a variety of electronic behaviors depending on the number of layers and width. Therefore, developing facile methods for their controllable synthesis is of central importance. We found that nickel nanoparticles promote both heterogeneous nucleation of the first layer of molybdenum disulfide and simultaneously catalyzes homoepitaxial tip growth of a second layer via a vapor-liquid-solid (VLS) mechanism, resulting in bilayer nanoribbons with width controlled by the nanoparticle diameter. Simulations further confirm the VLS growth mechanism toward nanoribbons and its orders of magnitude higher growth speed compared to the conventional noncatalytic growth of flakes. Width-dependent Coulomb blockade oscillation observed in the transfer characteristics of the nanoribbons at temperatures up to 60 K evidences the value of this proposed synthesis strategy for future nanoelectronics.