Browsing by Author "Hao, Lijie"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Effect of Nematic Order on the Low-Energy Spin Fluctuations in Detwinned BaFe1.935Ni0.065As2(American Physical Society, 2016) Zhang, Wenliang; Park, J.T.; Lu, Xingye; Wei, Yuan; Ma, Xiaoyan; Hao, Lijie; Dai, Pengcheng; Meng, Zi Yang; Yang, Yi-feng; Luo, Huiqian; Li, ShiliangThe origin of nematic order remains one of the major debates in iron-based superconductors. In theories based on spin nematicity, one major prediction is that the spin-spin correlation length at (0,π) should decrease with decreasing temperature below the structural transition temperature Ts. Here, we report inelastic neutron scattering studies on the low-energy spin fluctuations in BaFe1.935Ni0.065As2 under uniaxial pressure. Both intensity and spin-spin correlation start to show anisotropic behavior at high temperature, while the reduction of the spin-spin correlation length at (0,π) happens just below Ts, suggesting the strong effect of nematic order on low-energy spin fluctuations. Our results favor the idea that treats the spin degree of freedom as the driving force of the electronic nematic order.Item Exchange field enhanced upper critical field of the superconductivity in compressed antiferromagnetic EuTe2(Springer Nature, 2023) Sun, Hualei; Qiu, Liang; Han, Yifeng; Zhang, Yunwei; Wang, Weiliang; Huang, Chaoxin; Liu, Naitian; Huo, Mengwu; Li, Lisi; Liu, Hui; Liu, Zengjia; Cheng, Peng; Zhang, Hongxia; Wang, Hongliang; Hao, Lijie; Li, Man-Rong; Yao, Dao-Xin; Hou, Yusheng; Dai, Pengcheng; Wang, Meng; Rice Center for Quantum MaterialsUnderstanding the interplay between superconductivity and magnetism has been a longstanding challenge in condensed matter physics. Here we report high pressure studies on the C-type antiferromagnetic semiconductor EuTe2 up to 36.0 GPa. A structural transition from the I4/mcm to the C2/m space group is identified at ~16 GPa. Superconductivity is observed above ~5 GPa in both structures. In the low-pressure phase, magnetoresistance measurements reveal strong couplings between the local moments of Eu2+ and the conduction electrons of Te 5p orbits. The upper critical field of superconductivity is well above the Pauli limit. While EuTe2 becomes nonmagnetic in the high-pressure phase and the upper critical field drops below the Pauli limit. Our results demonstrate that the high upper critical field of EuTe2 in the low-pressure phase is due to the exchange field compensation effect of Eu2+ and the superconductivity in both structures may arise in the framework of the Bardeen-Cooper-Schrieffer theory.