Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Guo, Weihong"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Rapid and Robust Numerical Algorithm for Sensitivity Encoding with Sparsity Constraints: Self-Feeding Sparse SENSE
    (2010-11) Huang, Feng; Chen, Yunmei; Yin, Wotao; Lin, Wei; Ye, Xiaojing; Guo, Weihong; Reykowski, Arne
    The method of enforcing sparsity during magnetic resonance imaging reconstruction has been successfully applied to partially parallel imaging (PPI) techniques to reduce noise and artifact levels and hence to achieve even higher acceleration factors. However, there are two major problems in the existing sparsity-constrained PPI techniques: speed and robustness. By introducing an auxiliary variable and decomposing the original minimization problem into two subproblems that are much easier to solve, a fast and robust numerical algorithm for sparsity-constrained PPI technique is developed in this work. The specific implementation for a conventional Cartesian trajectory data set is named self-feeding Sparse Sensitivity Encoding (SENSE). The computational cost for the proposed method is two conventional SENSE reconstructions plus one spatially adaptive image denoising procedure. With reconstruction time approximately doubled, images with a much lower root mean square error (RMSE) can be achieved at high acceleration factors. Using a standard eight-channel head coil, a net acceleration factor of 5 along one dimension can be achieved with low RMSE. Furthermore, the algorithm is insensitive to the choice of parameters. This work improves the clinical applicability of SENSE at high acceleration factors.
  • Loading...
    Thumbnail Image
    Item
    Edge Guided Reconstruction for Compressive Imaging
    (Society for Industrial and Applied Mathematics, 2012-07-03) Guo, Weihong; Yin, Wotao; National Science Foundation; Office of Naval Research; Alfred P. Sloan Foundation
    We propose EdgeCS—an edge guided compressive sensing reconstruction approach—to recover images of higher quality from fewer measurements than the current methods. Edges are important image features that are used in various ways in image recovery, analysis, and understanding. In compressive sensing, the sparsity of image edges has been successfully utilized to recover images. However, edge detectors have not been used on compressive sensing measurements to improve the edge recovery and subsequently the image recovery. This motivates us to propose EdgeCS, which alternatively performs edge detection and image reconstruction in a mutually beneficial way. The edge detector of EdgeCS is designed to faithfully return partial edges from intermediate image reconstructions even though these reconstructions may still have noise and artifacts. For complex-valued images, it incorporates joint sparsity between the real and imaginary components. EdgeCS has been implemented with both isotropic and anisotropic discretizations of total variation and tested on incomplete k-space (spectral Fourier) samples. It applies to other types of measurements as well. Experimental results on large-scale real/complex-valued phantom and magnetic resonance (MR) images show that EdgeCS is fast and returns high-quality images. For example, it exactly recovers the 256×256 Shepp–Logan phantom from merely 7 radial lines (3.03% k-space), which is impossible for most existing algorithms. It is able to accurately reconstruct a 512 × 512 MR image with 0.05 white noise from 20.87% radial samples. On complex-valued MR images, it obtains recoveries with faithful phases, which are important in many medical applications. Each of these tests took around 30 seconds on a standard PC. Finally, the algorithm is GPU friendly.
  • Loading...
    Thumbnail Image
    Item
    EdgeCS: Edge Guided Compressive Sensing Reconstruction
    (2010-01) Guo, Weihong; Yin, Wotao
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892