Browsing by Author "Guo, Hua"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Ultrahigh resistance of hexagonal boron nitride to mineral scale formation(Springer Nature, 2022) Zuo, Kuichang; Zhang, Xiang; Huang, Xiaochuan; Oliveira, Eliezer F.; Guo, Hua; Zhai, Tianshu; Wang, Weipeng; Alvarez, Pedro J.J.; Elimelech, Menachem; Ajayan, Pulickel M.; Lou, Jun; Li, Qilin; NSF Nanosystems Engineering Research Center Nanotechnology-Enabled Water TreatmentFormation of mineral scale on a material surface has profound impact on a wide range of natural processes as well as industrial applications. However, how specific material surface characteristics affect the mineral-surface interactions and subsequent mineral scale formation is not well understood. Here we report the superior resistance of hexagonal boron nitride (hBN) to mineral scale formation compared to not only common metal and polymer surfaces but also the highly scaling-resistant graphene, making hBN possibly the most scaling resistant material reported to date. Experimental and simulation results reveal that this ultrahigh scaling-resistance is attributed to the combination of hBN’s atomically-smooth surface, in-plane atomic energy corrugation due to the polar boron-nitrogen bond, and the close match between its interatomic spacing and the size of water molecules. The latter two properties lead to strong polar interactions with water and hence the formation of a dense hydration layer, which strongly hinders the approach of mineral ions and crystals, decreasing both surface heterogeneous nucleation and crystal attachment.Item Visualizing the double-gyroid twin(National Academy of Sciences, 2021) Feng, Xueyan; Zhuo, Mujin; Guo, Hua; Thomas, Edwin L.Periodic gyroid network materials have many interesting properties (band gaps, topologically protected modes, superior charge and mass transport, and outstanding mechanical properties) due to the space-group symmetries and their multichannel triply continuous morphology. The three-dimensional structure of a twin boundary in a self-assembled polystyrene-b-polydimethylsiloxane (PS-PDMS) double-gyroid (DG) forming diblock copolymer is directly visualized using dual-beam scanning microscopy. The reconstruction clearly shows that the intermaterial dividing surface (IMDS) is smooth and continuous across the boundary plane as the pairs of chiral PDMS networks suddenly change their handedness. The boundary plane therefore acts as a topological mirror. The morphology of the normally chiral nodes and strut loops within the networks is altered in the twin-boundary plane with the formation of three new types of achiral nodes and the appearance of two new classes of achiral loops. The boundary region shares a very similar surface/volume ratio and distribution of the mean and Gaussian curvatures of the IMDS as the adjacent ordered DG grain regions, suggesting the twin is a low-energy boundary.