Browsing by Author "Guguchia, Zurab"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Disentangling superconducting and magnetic orders in NaFe1−xNixAs using muon spin rotation(American Physical Society, 2018) Cheung, Sky C.; Guguchia, Zurab; Frandsen, Benjamin A.; Gong, Zizhou; Yamakawa, Kohtaro; Almeida, Dalson E.; Onuorah, Ifeanyi J.; Bonfá, Pietro; Miranda, Eduardo; Wang, Weiyi; Tam, David W.; Song, Yu; Cao, Chongde; Cai, Yipeng; Hallas, Alannah M.; Wilson, Murray N.; Munsie, Timothy J.S.; Luke, Graeme; Chen, Bijuan; Dai, Guangyang; Jin, Changqing; Guo, Shengli; Ning, Fanlong; Fernandes, Rafael M.; De Renzi, Roberto; Dai, Pengcheng; Uemura, Yasutomo J.Muon spin rotation and relaxation studies have been performed on a “111” family of iron-based superconductors, NaFe1−xNixAs, using single crystalline samples with Ni concentrations x=0, 0.4, 0.6, 1.0, 1.3, and 1.5%. Static magnetic order was characterized by obtaining the temperature and doping dependences of the local ordered magnetic moment size and the volume fraction of the magnetically ordered regions. For x=0 and 0.4%, a transition to a nearly-homogeneous long range magnetically ordered state is observed, while for x≳0.4% magnetic order becomes more disordered and is completely suppressed for x=1.5%. The magnetic volume fraction continuously decreases with increasing x. Development of superconductivity in the full volume is inferred from Meissner shielding results for x≳0.4%. The combination of magnetic and superconducting volumes implies that a spatially-overlapping coexistence of magnetism and superconductivity spans a large region of the T−x phase diagram for NaFe1−xNixAs. A strong reduction of both the ordered moment size and the volume fraction is observed below the superconducting TC for x=0.6, 1.0, and 1.3%, in contrast to other iron pnictides in which one of these two parameters exhibits a reduction below TC, but not both. The suppression of magnetic order is further enhanced with increased Ni doping, leading to a reentrant nonmagnetic state below TC for x=1.3%. The reentrant behavior indicates an interplay between antiferromagnetism and superconductivity involving competition for the same electrons. These observations are consistent with the sign-changing s± superconducting state, which is expected to appear on the verge of microscopic coexistence and phase separation with magnetism. We also present a universal linear relationship between the local ordered moment size and the antiferromagnetic ordering temperature TN across a variety of iron-based superconductors. We argue that this linear relationship is consistent with an itinerant-electron approach, in which Fermi surface nesting drives antiferromagnetic ordering. In studies of superconducting properties, we find that the T=0 limit of superfluid density follows the linear trend observed in underdoped cuprates when plotted against TC. This paper also includes a detailed theoretical prediction of the muon stopping sites and provides comparisons with experimental results.Item Local Orthorhombicity in the Magnetic ${C}_{4}$ Phase of the Hole-Doped Iron-Arsenide Superconductor ${\mathrm{Sr}}_{1\ensuremath{-}x}{\mathrm{Na}}_{x}{\mathrm{Fe}}_{2}{\mathrm{As}}_{2}$(American Physical Society, 2017) Frandsen, Benjamin A.; Taddei, Keith M.; Yi, Ming; Frano, Alex; Guguchia, Zurab; Yu, Rong; Si, Qimiao; Bugaris, Daniel E.; Stadel, Ryan; Osborn, Raymond; Rosenkranz, Stephan; Chmaissem, Omar; Birgeneau, Robert J.; Rice Center for Quantum MaterialsWe report on temperature-dependent pair distribution function measurements of Sr1−xNaxFe2As2, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C4 phase. Quantitative refinements indicate that the instantaneous local structure in the C4 phase comprises fluctuating orthorhombic regions with a length scale of ∼2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. These results highlight the exceptionally large nematic susceptibility of iron-based superconductors and have significant implications for the magnetic C4 phase and the neighboring C2 and superconducting phases.Item The Magnetic Genome of Two-Dimensional van der Waals Materials(American Chemical Society, 2022) Wang, Qing Hua; Bedoya-Pinto, Amilcar; Blei, Mark; Dismukes, Avalon H.; Hamo, Assaf; Jenkins, Sarah; Koperski, Maciej; Liu, Yu; Sun, Qi-Chao; Telford, Evan J.; Kim, Hyun Ho; Augustin, Mathias; Vool, Uri; Yin, Jia-Xin; Li, Lu Hua; Falin, Alexey; Dean, Cory R.; Casanova, Fèlix; Evans, Richard F.L.; Chshiev, Mairbek; Mishchenko, Artem; Petrovic, Cedomir; He, Rui; Zhao, Liuyan; Tsen, Adam W.; Gerardot, Brian D.; Brotons-Gisbert, Mauro; Guguchia, Zurab; Roy, Xavier; Tongay, Sefaattin; Wang, Ziwei; Hasan, M. Zahid; Wrachtrup, Joerg; Yacoby, Amir; Fert, Albert; Parkin, Stuart; Novoselov, Kostya S.; Dai, Pengcheng; Balicas, Luis; Santos, Elton J.G.Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.