Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Grzelczak, Marek"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Chiral and Achiral Nanodumbbell Dimers: The Effect of Geometry on Plasmonic Properties
    (American Chemical Society, 2016) Smith, Kyle W.; Zhao, Hangqi; Zhang, Hui; Sánchez -Iglesias, Ana; Grzelczak, Marek; Wang, Yumin; Chang, Wei-Shun; Nordlander, Peter; Liz-Marzán, Luis; Link, Stephan; Laboratory for Nanophotonics
    Metal nanoparticles with a dumbbell-like geometry have plasmonic properties similar to those of their nanorod counterparts, but the unique steric constraints induced by their enlarged tips result in distinct geometries when self-assembled. Here, we investigate gold dumbbells that are assembled into dimers within polymeric micelles. A single-particle approach with correlated scanning electron microscopy and dark-field scattering spectroscopy reveals the effects of dimer geometry variation on the scattering properties. The dimers are prepared using exclusively achiral reagents, and the resulting dimer solution produces no detectable ensemble circular dichroism response. However, single-particle circular differential scattering measurements uncover that this dimer sample is a racemic mixture of individual nanostructures with significant positive and negative chiroptical signals. These measurements are complemented with detailed simulations that confirm the influence of various symmetry elements on the overall peak resonance energy, spectral line shape, and circular differential scattering response. This work expands the current understanding of the influence self-assembled geometries have on plasmonic properties, particularly with regard to chiral and/or racemic samples which may have significant optical activity that may be overlooked when using exclusively ensemble characterization techniques.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892