Browsing by Author "Grossman, Robert G."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Design and Optimization of an EEG-Based Brain Machine Interface (BMI) to an Upper-Limb Exoskeleton for Stroke Survivors(Frontiers Media S.A., 2016) Bhagat, Nikunj A.; Venkatakrishnan, Anusha; Abibullaev, Berdakh; Artz, Edward J.; Yozbatiran, Nuray; Blank, Amy A.; French, James; Karmonik, Christof; Grossman, Robert G.; O’Malley, Marcia K.; Francisco, Gerard E.; Contreras-Vidal, Jose L.This study demonstrates the feasibility of detecting motor intent from brain activity of chronic stroke patients using an asynchronous electroencephalography (EEG)-based brain machine interface (BMI). Intent was inferred from movement related cortical potentials (MRCPs) measured over an optimized set of EEG electrodes. Successful intent detection triggered the motion of an upper-limb exoskeleton (MAHI Exo-II), to guide movement and to encourage active user participation by providing instantaneous sensory feedback. Several BMI design features were optimized to increase system performance in the presence of single-trial variability of MRCPs in the injured brain: (1) an adaptive time window was used for extracting features during BMI calibration; (2) training data from two consecutive days were pooled for BMI calibration to increase robustness to handle the day-to-day variations typical of EEG, and (3) BMI predictions were gated by residual electromyography (EMG) activity from the impaired arm, to reduce the number of false positives. This patient-specific BMI calibration approach can accommodate a broad spectrum of stroke patients with diverse motor capabilities. Following BMI optimization on day 3, testing of the closed-loop BMI-MAHI exoskeleton, on 4th and 5th days of the study, showed consistent BMI performance with overall mean true positive rate (TPR) = 62.7 ± 21.4% on day 4 and 67.1 ± 14.6% on day 5. The overall false positive rate (FPR) across subjects was 27.74 ± 37.46% on day 4 and 27.5 ± 35.64% on day 5; however for two subjects who had residual motor function and could benefit from the EMG-gated BMI, the mean FPR was quite low (< 10%). On average, motor intent was detected −367 ± 328 ms before movement onset during closed-loop operation. These findings provide evidence that closed-loop EEG-based BMI for stroke patients can be designed and optimized to perform well across multiple days without system recalibration.Item Improving robotic stroke rehabilitation by incorporating neural intent detection: Preliminary results from a clinical trial(IEEE, 2017) Sullivan, Jennifer L.; Bhagat, Nikunj A.; Yozbatiran, Nuray; Paranjape, Ruta; Losey, Colin G.; Grossman, Robert G.; Contreras-Vidal, Jose L.; Francisco, Gerard E.; O’Malley, Marcia K.This paper presents the preliminary findings of a multi-year clinical study evaluating the effectiveness of adding a brain-machine interface (BMI) to the MAHI-Exo II, a robotic upper limb exoskeleton, for elbow flexion/extension rehabilitation in chronic stroke survivors. The BMI was used to trigger robot motion when movement intention was detected from subjects' neural signals, thus requiring that subjects be mentally engaged during robotic therapy. The first six subjects to complete the program have shown improvements in both Fugl-Meyer Upper-Extremity scores as well as in kinematic movement quality measures that relate to movement planning, coordination, and control. These results are encouraging and suggest that increasing subject engagement during therapy through the addition of an intent-detecting BMI enhances the effectiveness of standard robotic rehabilitation.