Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gramm, Josh"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Adsorption of aqueous insensitive munitions compounds by graphene nanoplatelets
    (Elsevier, 2024) Gurtowski, Luke A.; McLeod, Sheila J.; Zetterholm, Sarah Grace; Allison, Cleveland D.; Griggs, Chris S.; Gramm, Josh; Wyss, Kevin; Tour, James M.; Sanchez, Florence; Rice Advanced Materials Institute; Smalley-Curl Institute
    Mitigation strategies for potential environmental impacts of insensitive munition (IM) compounds, including 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), nitroguanidine (NQ), and methylnitroguanidine, (MeNQ) are being considered to enhance sustainability of current or potential IM formulations. Graphene nanoplatelets (GnPs) were investigated for adsorptive removal of each compound. GnPs were characterized to determine surface areas, along with particle size and zeta potential at different pH and ionic strength conditions. Adsorption kinetics and isotherm studies were conducted, comparing results against granular activated carbon (GAC). Ionic strength, pH, and temperature were adjusted to inform impacts on adsorptive behaviors and performance. The results indicated that GnPs adsorbed IM compounds more rapidly than GAC. Additionally, GnPs removed DNAN with greater capacity compared to GAC, likely due to π-π interactions. GnPs removed other compounds via van der Waals forces, while GAC exhibited greater adsorption capacities due to higher surface area. Although negative charges associated with GnPs and dissociated NTO species hindered adsorption, pH and ionic strength did not impact other compounds. Moreover, this study reports the first environmental treatment technique for MeNQ. Overall, these findings suggest that GnPs are a promising treatment technology for IM-laden waters, particularly those with compounds like DNAN where specific interactions enhance removal efficiency.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892