Browsing by Author "Goodman, Wayne"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Computational modeling and minimization of unintended neuronal excitation in a LIFU stimulation(Springer Nature, 2023) Fan, Boqiang; Goodman, Wayne; Cho, Raymond Y.; Sheth, Sameer A.; Bouchard, Richard R.; Aazhang, BehnaamThe neuromodulation effect of low-intensity focused ultrasound (LIFU) is highly target-specific. Unintended off-target neuronal excitation can be elicited when the beam focusing accuracy and resolution are limited, whereas the resulted side effect has not been evaluated quantitatively. There is also a lack of methods addressing the minimization of such side effects. Therefore, this work introduces a computational model of unintended neuronal excitation during LIFU neuromodulation, which evaluates the off-target activation area (OTAA) by integrating an ultrasound field model with the neuronal spiking model. In addition, a phased array beam focusing scheme called constrained optimal resolution beamforming (CORB) is proposed to minimize the off-target neuronal excitation area while ensuring effective stimulation in the target brain region. A lower bound of the OTAA is analytically approximated in a simplified homogeneous medium, which could guide the selection of transducer parameters such as aperture size and operating frequency. Simulations in a human head model using three transducer setups show that CORB markedly reduces the OTAA compared with two benchmark beam focusing methods. The high neuromodulation resolution demonstrates the capability of LIFU to effectively limit the side effects during neuromodulation, allowing future clinical applications such as treatment of neuropsychiatric disorders.Item EMvelop stimulation: minimally invasive deep brain stimulation using temporally interfering electromagnetic waves(IOP Publishing, 2022) Ahsan, Fatima; Chi, Taiyun; Cho, Raymond; Sheth, Sameer A.; Goodman, Wayne; Aazhang, BehnaamObjective. Recently, the temporal interference stimulation (TIS) technique for focal noninvasive deep brain stimulation (DBS) was reported. However, subsequent computational modeling studies on the human brain have shown that while TIS achieves higher focality of electric fields than state-of-the-art methods, further work is needed to improve the stimulation strength. Here, we investigate the idea of EMvelop stimulation, a minimally invasive DBS setup using temporally interfering gigahertz (GHz) electromagnetic (EM) waves. At GHz frequencies, we can create antenna arrays at the scale of a few centimeters or less that can be endocranially implanted to enable longitudinal stimulation and circumvent signal attenuation due to the scalp and skull. Furthermore, owing to the small wavelength of GHz EM waves, we can optimize both amplitudes and phases of the EM waves to achieve high intensity and focal stimulation at targeted regions within the safety limit for exposure to EM waves. Approach. We develop a simulation framework investigating the propagation of GHz EM waves generated by line current antenna elements and the corresponding heat generated in the brain tissue. We propose two optimization flows to identify antenna current amplitudes and phases for either maximal intensity or maximal focality transmission of the interfering electric fields with EM waves safety constraint. Main results. A representative result of our study is that with two endocranially implanted arrays of size × each, we can achieve an intensity of 12 V m−1 with a focality of at a target deep in the brain tissue. Significance. In this proof-of-principle study, we show that the idea of EMvelop stimulation merits further investigation as it can be a minimally invasive way of stimulating deep brain targets and offers benefits not shared by prior methodologies of electrical or magnetic stimulation.Item Modeling Suicidality with Multimodal Impulsivity Characterization in Participants with Mental Health Disorder(Hindawi, 2023) Moukaddam, Nidal; Lamichhane, Bishal; Salas, Ramiro; Goodman, Wayne; Sabharwal, AshutoshIntroduction. Suicide is one of the leading causes of death across different age groups. The persistence of suicidal ideation and the progression of suicidal ideations to action could be related to impulsivity, the tendency to act on urges with low temporal latency, and little forethought. Quantifying impulsivity could thus help suicidality estimation and risk assessments in ideation-to-action suicidality frameworks. Methods. To model suicidality with impulsivity quantification, we obtained questionnaires, behavioral tests, heart rate variability (HRV), and resting state functional magnetic resonance imaging measurements from 34 participants with mood disorders. The participants were categorized into three suicidality groups based on their Mini-International Neuropsychiatric Interview: none, low, and moderate to severe. Results. Questionnaire and HRV-based impulsivity measures were significantly different between the suicidality groups with higher subscales of impulsivity associated with higher suicidality. A multimodal system to characterize impulsivity objectively resulted in a classification accuracy of 96.77% in the three-class suicidality group prediction task. Conclusions. This study elucidates the relative sensitivity of various impulsivity measures in differentiating participants with suicidality and demonstrates suicidality prediction with high accuracy using a multimodal objective impulsivity characterization in participants with mood disorders.