Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Glaubach, Taly"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Mutation, drift and selection in single-driver hematologic malignancy: Example of secondary myelodysplastic syndrome following treatment of inherited neutropenia
    (Public Library of Science, 2019) Wojdyla, Tomasz; Mehta, Hrishikesh; Glaubach, Taly; Bertolusso, Roberto; Iwanaszko, Marta; Braun, Rosemary; Corey, Seth J.; Kimmel, Marek; Bioengineering; Statistics
    Cancer development is driven by series of events involving mutations, which may become fixed in a tumor via genetic drift and selection. This process usually includes a limited number of driver (advantageous) mutations and a greater number of passenger (neutral or mildly deleterious) mutations. We focus on a real-world leukemia model evolving on the background of a germline mutation. Severe congenital neutropenia (SCN) evolves to secondary myelodysplastic syndrome (sMDS) and/or secondary acute myeloid leukemia (sAML) in 30–40%. The majority of SCN cases are due to a germline ELANE mutation. Acquired mutations in CSF3R occur in >70% sMDS/sAML associated with SCN. Hypotheses underlying our model are: an ELANE mutation causes SCN; CSF3R mutations occur spontaneously at a low rate; in fetal life, hematopoietic stem and progenitor cells expands quickly, resulting in a high probability of several tens to several hundreds of cells with CSF3R truncation mutations; therapeutic granulocyte colony-stimulating factor (G-CSF) administration early in life exerts a strong selective pressure, providing mutants with a growth advantage. Applying population genetics theory, we propose a novel two-phase model of disease development from SCN to sMDS. In Phase 1, hematopoietic tissues expand and produce tens to hundreds of stem cells with the CSF3R truncation mutation. Phase 2 occurs postnatally through adult stages with bone marrow production of granulocyte precursors and positive selection of mutants due to chronic G-CSF therapy to reverse the severe neutropenia. We predict the existence of the pool of cells with the mutated truncated receptor before G-CSF treatment begins. The model does not require increase in mutation rate under G-CSF treatment and agrees with age distribution of sMDS onset and clinical sequencing data.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892