Browsing by Author "Gill, Bartley J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item A Synthetic Matrix with Independently Tunable Biochemistry and Mechanical Properties to Study Epithelial Morphogenesis and EMT in a Lung Adenocarcinoma Model(American Association for Cancer Research, 2012) Gill, Bartley J.; Gibbons, Don L.; Roudsari, Laila C.; Saik, Jennifer E.; Rizvi, Zain H.; Roybal, Jonathon D.; Kurie, Jonathan M.; West, Jennifer L.Better understanding of the biophysical and biochemical cues of the tumor extracellular matrix environment that influence metastasis may have important implications for new cancer therapeutics. Initial exploration into this question has used naturally derived protein matrices that suffer from variability, poor control over matrix biochemistry, and inability to modify the matrix biochemistry and mechanics. Here, we report the use of a synthetic polymer-based scaffold composed primarily of poly(ethylene glycol), or PEG, modified with bioactive peptides to study murine models of lung adenocarcinoma. In this study, we focus on matrix-derived influences on epithelial morphogenesis of a metastatic cell line (344SQ) that harbors mutations in Kras and p53 (trp53) and is prone to a microRNA-200 (miR-200)–dependent epithelial–mesenchymal transition (EMT) and metastasis. The modified PEG hydrogels feature biospecific cell adhesion and cell-mediated proteolytic degradation with independently adjustable matrix stiffness. 344SQ encapsulated in bioactive peptide-modified, matrix metalloproteinase–degradable PEG hydrogels formed lumenized epithelial spheres comparable to that seen with three-dimensional culture in Matrigel. Altering both matrix stiffness and the concentration of cell-adhesive ligand significantly influenced epithelial morphogenesis as manifest by differences in the extent of lumenization, in patterns of intrasphere apoptosis and proliferation, and in expression of epithelial polarity markers. Regardless of matrix composition, exposure to TGF-β induced a loss of epithelial morphologic features, shift in expression of EMT marker genes, and decrease in mir-200 levels consistent with EMT. Our findings help illuminate matrix-derived cues that influence epithelial morphogenesis and highlight the potential utility that this synthetic matrix-mimetic tool has for cancer biology.Item Cancer-Associated Fibroblasts Induce a Collagen Cross-link Switch in Tumor Stroma(American Association for Cancer Research, 2016) Pankova, Daniela; Chen, Yulong; Terajima, Masahiko; Schliekelman, Mark J.; Baird, Brandi N.; Fahrenholtz, Monica; Sun, Li; Gill, Bartley J.; Vadakkan, Tegy J.; Kim, Min P.; Ahn, Young-Ho; Roybal, Jonathon D.; Liu, Xin; Cuentas, Edwin Roger Parra; Rodriguez, Jaime; Wistuba, Ignacio I.; Creighton, Chad J.; Gibbons, Don L.; Hicks, John M.; Dickinson, Mary E.; West, Jennifer L.; Grande-Allen, K. Jane; Hanash, Samir M.; Yamauchi, Mitsuo; Kurie, Jonathan M.Intratumoral collagen cross-links heighten stromal stiffness and stimulate tumor cell invasion, but it is unclear how collagen cross-linking is regulated in epithelial tumors. To address this question, we used KrasLA1 mice, which develop lung adenocarcinomas from somatic activation of a KrasG12D allele. The lung tumors in KrasLA1 mice were highly fibrotic and contained cancer-associated fibroblasts (CAF) that produced collagen and generated stiffness in collagen gels. In xenograft tumors generated by injection of wild-type mice with lung adenocarcinoma cells alone or in combination with CAFs, the total concentration of collagen cross-links was the same in tumors generated with or without CAFs, but coinjected tumors had higher hydroxylysine aldehyde–derived collagen cross-links (HLCC) and lower lysine-aldehyde–derived collagen cross-links (LCCs). Therefore, we postulated that an LCC-to-HLCC switch induced by CAFs promotes the migratory and invasive properties of lung adenocarcinoma cells. To test this hypothesis, we created coculture models in which CAFs are positioned interstitially or peripherally in tumor cell aggregates, mimicking distinct spatial orientations of CAFs in human lung cancer. In both contexts, CAFs enhanced the invasive properties of tumor cells in three-dimensional (3D) collagen gels. Tumor cell aggregates that attached to CAF networks on a Matrigel surface dissociated and migrated on the networks. Lysyl hydroxylase 2 (PLOD2/LH2), which drives HLCC formation, was expressed in CAFs, and LH2 depletion abrogated the ability of CAFs to promote tumor cell invasion and migration.Item Fibulin-2 Is a Driver of Malignant Progression in Lung Adenocarcinoma(Public Library of Science, 2013) Baird, Brandi N.; Schliekelman, Mark J.; Ahn, Young-Ho; Chen, Yulong; Roybal, Jonathon D.; Gill, Bartley J.; Mishra, Dhruva K.; Erez, Baruch; OメReilly, Michael; Yang, Yanan; Patel, Mayuri; Liu, Xin; Thilaganathan, Nishan; Larina, Irina V.; Dickinson, Mary E.; West, Jennifer L.; Gibbons, Don L.; Liu, Diane D.; Kim, Min P.; Hicks, John M.; Wistuba, Ignacio I.; Hanash, Samir M.; Kurie, Jonathan M.The extracellular matrix of epithelial tumors undergoes structural remodeling during periods of uncontrolled growth, creating regional heterogeneity and torsional stress. How matrix integrity is maintained in the face of dynamic biophysical forces is largely undefined. Here we investigated the role of fibulin-2, a matrix glycoprotein that functions biomechanically as an inter-molecular clasp and thereby facilitates supra-molecular assembly. Fibulin-2 was abundant in the extracellular matrix of human lung adenocarcinomas and was highly expressed in tumor cell lines derived from mice that develop metastatic lung adenocarcinoma from co-expression of mutant K-ras and p53. Loss-offunction experiments in tumor cells revealed that fibulin-2 was required for tumor cells to grow and metastasize in syngeneic mice, a surprising finding given that other intra-tumoral cell types are known to secrete fibulin-2. However, tumor cells grew and metastasized equally well in Fbln2-null and -wildtype littermates, implying that malignant progression was dependent specifically upon tumor cellderived fibulin-2, which could not be offset by other cellular sources of fibulin-2. Fibulin-2 deficiency impaired the ability of tumor cells to migrate and invade in Boyden chambers, to create a stiff extracellular matrix in mice, to cross-link secreted collagen, and to adhere to collagen. We conclude