Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gibson, Greg"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Fine-mapping within eQTL credible intervals by expression CROP-seq
    (Oxford University Press, 2020) Pan, Yidan; Tian, Ruoyu; Lee, Ciaran; Bao, Gang; Gibson, Greg; Bioengineering
    The majority of genome-wide association study (GWAS)-identified SNPs are located in noncoding regions of genes and are likely to influence disease risk and phenotypes by affecting gene expression. Since credible intervals responsible for genome-wide associations typically consist of ≥100 variants with similar statistical support, experimental methods are needed to fine map causal variants. We report here a moderate-throughput approach to identifying regulatory GWAS variants, expression CROP-seq, which consists of multiplex CRISPR-Cas9 genome editing combined with single-cell RNAseq to measure perturbation in transcript abundance. Mutations were induced in the HL60/S4 myeloid cell line nearby 57 SNPs in three genes, two of which, rs2251039 and rs35675666, significantly altered CISD1 and PARK7 expression, respectively, with strong replication and validation in single-cell clones. The sites overlap with chromatin accessibility peaks and define causal variants for inflammatory bowel disease at the two loci. This relatively inexpensive approach should be scalable for broad surveys and is also implementable for the fine mapping of individual genes.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892