Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ghuman, Simrat M."

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Invariants of graphs
    (1996) Ghuman, Simrat M.; Cochran, Tim D.
    We address a classical problem in low dimensional topology: the classification of tamely embedded, finite, connected graphs $G$ in $S\sp3$ up to ambient isotopy. In the case that the graph $G$ is homeomorphic to $S\sp1$, our problem reduces to the embedding problem for knots in $S\sp3$. Our major result is the existence of a unique isotopy class of longitudes of a cycle for an infinite class of graphs. We then define new invariants for this infinite class of graphs. First we define a longitude $l\sb{c}$ of a cycle $c$ in $G$. In contrast to the situation of a knot, for a graph it is quite difficult to canonically select an isotopy class of longitudes, since the mapping class group of a many punctured torus is very large. However we prove that longitudes exist for any cycle in any finite graph and are unique in $H\sb1(S\sp3-G;\doubz)$. This definition of a longitude can be considered an extension of the definition of a longitude of a tamely embedded knot in $S\sp3$. We describe the specific conditions under which $l\sb{c}$ is unique in $\Pi$, the fundamental group of the graph complement, as well as the class of graphs which possess a basis of unique longitudes. Next, in the situation in which $l\sb{c}$ is unique for a cycle $c$ in $G$, we define a sequence of invariants $\bar\mu\sb{G}$ which detects whether $l\sb{c}$ lies in $\Pi\sb{n}$, the $n\sp{th}$ term of the lower central series of $\Pi$. These invariants can be viewed as extensions of Milnor's $\bar\mu\sb{L}$ invariants of a link $L$. Although $\bar\mu\sb{G}$ is not a complete invariant, we provide an example illustrating that $\bar\mu\sb{G}$ is more sensitive than Milnor's $\bar\mu\sb{L}$, where L is the subgraph of G consisting of a link.
  • Loading...
    Thumbnail Image
    Item
    Invariants of graphs
    (1993) Ghuman, Simrat M.; Cochran, Tim D.
    We define an infinite sequence of invariants $\bar\mu\sb{K}$ of connected, finite graphs K. These invariants detect whether or not a "longitude" associated to a cycle in K lies in the $n\sp{th}$ term of the lower central series of $\pi\sb1(S\sp3-K,p)$. In certain cases, these invariants can be compared to Milnor's $\bar\mu$-invariants associated to links contained in K, and are found to be more discriminating.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892