Repository logo
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • All of R-3
English
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ghosh, Sujoy"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Electric Double Layer Field-Effect Transistors Using Two-Dimensional (2D) Layers of Copper Indium Selenide (CuIn7Se11)
    (MDPI, 2019) Patil, Prasanna D.; Ghosh, Sujoy; Wasala, Milinda; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel M.; Talapatra, Saikat
    Innovations in the design of field-effect transistor (FET) devices will be the key to future application development related to ultrathin and low-power device technologies. In order to boost the current semiconductor device industry, new device architectures based on novel materials and system need to be envisioned. Here we report the fabrication of electric double layer field-effect transistors (EDL-FET) with two-dimensional (2D) layers of copper indium selenide (CuIn7Se11) as the channel material and an ionic liquid electrolyte (1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6)) as the gate terminal. We found one order of magnitude improvement in the on-off ratio, a five- to six-times increase in the field-effect mobility, and two orders of magnitude in the improvement in the subthreshold swing for ionic liquid gated devices as compared to silicon dioxide (SiO2) back gates. We also show that the performance of EDL-FETs can be enhanced by operating them under dual (top and back) gate conditions. Our investigations suggest that the performance of CuIn7Se11 FETs can be significantly improved when BMIM-PF6 is used as a top gate material (in both single and dual gate geometry) instead of the conventional dielectric layer of the SiO2 gate. These investigations show the potential of 2D material-based EDL-FETs in developing active components of future electronics needed for low-power applications.
  • About R-3
  • Report a Digital Accessibility Issue
  • Request Accessible Formats
  • Fondren Library
  • Contact Us
  • FAQ
  • Privacy Notice
  • R-3 Policies

Physical Address:

6100 Main Street, Houston, Texas 77005

Mailing Address:

MS-44, P.O.BOX 1892, Houston, Texas 77251-1892