Browsing by Author "Georgen, C."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Band Jahn-Teller structural phase transition inᅠY2In(American Physical Society, 2018) Svanidze, E.; Georgen, C.; Hallas, A.M.; Huang, Q.; Santiago, J.M.; Lynn, J.W.; Morosan, E.The number of paramagnetic materials that undergo a structural phase transition is rather small, which can perhaps explain the limited understanding of the band Jahn-Teller mechanism responsible for this effect. Here we present a structural phase transition observed in paramagnetic Y2In at temperature T0=250±5 K. Below T0, the high-temperature hexagonal P63/mmc phase transforms into the low-temperature orthorhombic Pnma phase. This transition is accompanied by an unambiguous thermal hysteresis of about 10 K, observed in both magnetic susceptibility M/H(T) and resistivity ρ(T), indicating a first-order transition. Band structure calculations suggest a band Jahn-Teller mechanism, during which the degeneracy of electron bands close to the Fermi energy is broken. We establish that this structural phase transition does not have a magnetic component; however, the possibility of a charge density wave formation has not been eliminated.Item Possible Mott transition in layered Sr2Mn3As2O2ᅠsingle crystals(American Physical Society, 2019) Chen, Chih-Wei; Wang, Weiyi; Loganathan, Vaideesh; Carr, Scott V.; Harriger, Leland W.; Georgen, C.; Nevidomskyy, Andriy H.; Dai, Pengcheng; Huang, C.-L.; Morosan, E.Single crystals of Sr2Mn3As2O2 have been grown for the first time, for which we show a possible layer-selective Mott insulator behavior. This compound stands out as a hybrid structure of MnO2 and MnAs layers, analogously to the active CuO2 and FeAs layers, respectively, in the cuprate and iron-based high-temperature superconductors. Electrical transport, neutron diffraction measurements, together with density functional theory calculations on Sr2Mn3As2O2 single crystals converge toward a picture of independent magnetic order at T1∼79 K and T2∼360 K for the two Mn sublattices, with insulating behavior at odds with the metallic behavior predicted by calculations. Furthermore, our inelastic neutron-scattering studies of spin-wave dispersions for the Mn(1) sublattice reveal an effective magnetic exchange coupling of SJ∼3.7 meV. This is much smaller than those for the Mn(2) sublattice.