Browsing by Author "Gendreau, Keith"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Pulse Peak Migration during the Outburst Decay of the Magnetar SGR 1830-0645: Crustal Motion and Magnetospheric Untwisting(IOP Publishing, 2022) Younes, George; Lander, Samuel K.; Baring, Matthew G.; Enoto, Teruaki; Kouveliotou, Chryssa; Wadiasingh, Zorawar; Ho, Wynn C. G.; Harding, Alice K.; Arzoumanian, Zaven; Gendreau, Keith; Güver, Tolga; Hu, Chin-Ping; Malacaria, Christian; Ray, Paul S.; Strohmayer, Tod E.Magnetars, isolated neutron stars with magnetic-field strengths typically ≳1014 G, exhibit distinctive months-long outburst epochs during which strong evolution of soft X-ray pulse profiles, along with nonthermal magnetospheric emission components, is often observed. Using near-daily NICER observations of the magnetar SGR 1830-0645 during the first 37 days of a recent outburst decay, a pulse peak migration in phase is clearly observed, transforming the pulse shape from an initially triple-peaked to a single-peaked profile. Such peak merging has not been seen before for a magnetar. Our high-resolution phase-resolved spectroscopic analysis reveals no significant evolution of temperature despite the complex initial pulse shape, yet the inferred surface hot spots shrink during peak migration and outburst decay. We suggest two possible origins for this evolution. For internal heating of the surface, tectonic motion of the crust may be its underlying cause. The inferred speed of this crustal motion is ≲100 m day−1, constraining the density of the driving region to ρ ∼ 1010 g cm−3, at a depth of ∼200 m. Alternatively, the hot spots could be heated by particle bombardment from a twisted magnetosphere possessing flux tubes or ropes, somewhat resembling solar coronal loops, that untwist and dissipate on the 30–40 day timescale. The peak migration may then be due to a combination of field-line footpoint motion (necessarily driven by crustal motion) and evolving surface radiation beaming. This novel data set paints a vivid picture of the dynamics associated with magnetar outbursts, yet it also highlights the need for a more generic theoretical picture where magnetosphere and crust are considered in tandem.Item The 2022 High-energy Outburst and Radio Disappearing Act of the Magnetar 1E 1547.0–5408(IOP Publishing, 2023) Lower, Marcus E.; Younes, George; Scholz, Paul; Camilo, Fernando; Dunn, Liam; Johnston, Simon; Enoto, Teruaki; Sarkissian, John M.; Reynolds, John E.; Palmer, David M.; Arzoumanian, Zaven; Baring, Matthew G.; Gendreau, Keith; Göğüş, Ersin; Guillot, Sebastien; Horst, Alexander J. van der; Hu, Chin-Ping; Kouveliotou, Chryssa; Lin, Lin; Malacaria, Christian; Stewart, Rachael; Wadiasingh, ZorawarWe report the radio and high-energy properties of a new outburst from the radio-loud magnetar 1E 1547.0−5408. Following the detection of a short burst from the source with Swift-BAT on 2022 April 7, observations by NICER detected an increased flux peaking at (6.0 ± 0.4) × 10−11 erg s−1 cm−2 in the soft X-ray band, falling to a baseline level of 1.7 × 10−11 erg s−1 cm−2 over a 17 day period. Joint spectroscopic measurements by NICER and NuSTAR indicated no change in the hard nonthermal tail despite the prominent increase in soft X-rays. Observations at radio wavelengths with Murriyang, the 64 m Parkes radio telescope, revealed that the persistent radio emission from the magnetar disappeared at least 22 days prior to the initial Swift-BAT detection and was redetected two weeks later. Such behavior is unprecedented in a radio-loud magnetar, and may point to an unnoticed slow rise in the high-energy activity prior to the detected short bursts. Finally, our combined radio and X-ray timing revealed the outburst coincided with a spin-up glitch, where the spin frequency and spin-down rate increased by 0.2 ± 0.1 μHz and (−2.4 ± 0.1) × 10−12 s−2, respectively. A linear increase in the spin-down rate of (−2.0 ± 0.1) × 10−19 s−3 was also observed over 147 days of postoutburst timing. Our results suggest that the outburst may have been associated with a reconfiguration of the quasi-polar field lines, likely signaling a changing twist, accompanied by spatially broader heating of the surface and a brief quenching of the radio signal, yet without any measurable impact on the hard X-ray properties.